Skip to main content

Mechanisms of Separation of the Complementary Strands of DNA During Replication

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 299 Accesses

Abstract

This article is a perspective on the separation of the complementary strands of DNA during replication. Given the challenges of DNA strand separation and its vital importance, it is not surprising that cells have developed many strategies for promoting unlinking. We summarize seven different factors that contribute to strand separation and chromosome segregation. These are: 1. supercoiling promotes unlinking by condensation of DNA; 2. unlinking takes place throughout a replicating domain by the complementary action of topoisomerases on precatenanes and supercoils; 3. topological domains isolate the events near the replication fork and permit the supercoiling-dependent condensation of partially replicated DNA; 4. type-II topoisomerases use ATP to actively unlink DNA past the equilibrium position; 5. the effective DNA concentration in vivo is less than the global DNA concentration; 6. mechanical forces help unlink chromosomes; and 7. site-specific recombination promotes unlinking at the termination of replication by resolving circular dimeric chromosomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lohman, T.M. and Bjornson, K.P. (1996) Mechanisms of helicase-catalyzed DNA unwinding, Ann. Rev. Biochem 65, 169–214.

    Article  PubMed  CAS  Google Scholar 

  2. Kornberg, A. and Baker, T. (1990)DNA Replication, W.H. Freeman, San Francisco.

    Google Scholar 

  3. Sinden, R.R. and Pettijohn D.E. (1982) Torsional tension in intracellular bacteriophage T4 DNA: Evidence that a linear DNA duplex can be supercoiled in vivo, J. Mol. Biol 162, 659–677.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, J.C. (1996) DNA topoisomerases, Ann. Rev. Biochem 65, 635–692.

    Article  PubMed  CAS  Google Scholar 

  5. Ullsperger, C.J., Vologodskii, A.V., and Cozzarelli, N.R. (1995) Unlinking of DNA by topoisomerases during DNA replication, Nuc. Acids and Molec. Biol 9, 115–142.

    Article  CAS  Google Scholar 

  6. White, T.H. (1969) Self-linking and the Gauss integral in higher dimensions, Am. M. Math 91, 693–729

    Article  Google Scholar 

  7. Gellert, M., Menzel, R., Mizuuchi, K., O’Dea, M.H. and Friedman, D.I. (1983) Regulation of DNA supercoiling in Escherichia coli, Cold Spring Harb. Symp. Quant. Biol 47,763–767

    Article  PubMed  Google Scholar 

  8. Vologodskii, A.V. (1992) Topology and physics of circular DNA, CRC Press, Boca Raton.

    Google Scholar 

  9. Pohl, W.F. and Roberts, G.W. (1978) Topological considerations in the theory of replication of DNA, J. Math. Biol 6, 383–402.

    Article  PubMed  CAS  Google Scholar 

  10. Phoenix, P., Raymond, M.A., Masse, E. and Drolet, M. (1997) Roles of DNA topoisomerases in the regulation of R-loop formation in vitro, J. Biol. Chem 272, 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  11. Zechiedrich, E. Lynn, Khodursky, Arkady B., and Cozzarelli, Nicholas R. (1997) Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Eschericia coli. Genes Dev 11, 2580–2592.

    Article  CAS  Google Scholar 

  12. Wang, J.C. (1991) DNA topoisomerases: why so many? J. Biol. Chem 266, 6659–6662.

    PubMed  CAS  Google Scholar 

  13. Zimmerman, S.B. (1993) Macromolecular crowding effects on macromolecular interactions: some implications for genome structure, Biochim. Biophys. Acta 1216, 175–185.

    Article  PubMed  CAS  Google Scholar 

  14. Kellenberger, E. (1987) The compactness of cellular plasmas; in particular, chromatin compactness in relation to function, Trends Biochem. Sci 12, 105–107.

    Article  CAS  Google Scholar 

  15. Hiraga, S. (1992). Chromosome and plasmid partitioning in Eschericia coli. Ann. Rev. Biochem 61, 283–306.

    Article  PubMed  CAS  Google Scholar 

  16. Bates, A.D., and Maxwell, A. (1993) DNA topology, Oxford University Press, New York, New York.

    Google Scholar 

  17. DiGate, R.J. and Marians, K.J. (1988) Identification of a potent decatenating enzyme from Escherichia tali, J. Biol. Chem 263, 13366–13373.

    PubMed  CAS  Google Scholar 

  18. Yanagida, M. and Stemglanz, R. (1990) Genetics of DNA topoisomerases, in N.R. Cozzarelli and J.C. Wang (eds.), DNA topology and its biological effects, Cold Spring Harber Laboratory Press, Cold Spring Harbor, New York, pp. 299–320.

    Google Scholar 

  19. Champoux, J.J. and Dulbecco, R. (1972) An activity from mammalian cells that untwists superhelical DNA: a possible swivel for DNA replication,Proc. Natl. Acad. Sci. USA 69, 143–146.

    Article  CAS  Google Scholar 

  20. Kim, R.A. and Wang, J.C. (1989) Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae, J. Mol. Biol 208, 257–267.

    Article  PubMed  CAS  Google Scholar 

  21. Uemura, T., Ohkura, H., Adachi, Y., Morino, K., Shiozaki, K. and Yanagida, M. (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe, Cell 50, 917–925.

    Article  PubMed  CAS  Google Scholar 

  22. Rybenkov, V.V., Vologodskii, A.V. and Cozzarelli, N.R. (1997) The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation, J. Mol. Biol 267, 312–323.

    Article  PubMed  CAS  Google Scholar 

  23. Ullsperger, C.J. and Cozzarelli, N.R. (1996) Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli, J. Biol. Chem 271, 31549–31555.

    Article  PubMed  CAS  Google Scholar 

  24. Steck, T. R. and Drlica, K. (1984) Bacterial Chromosome Segregation: Evidence for DNA Gyrase Involvement in Decatenation,Cell 1081–1088.

    Google Scholar 

  25. Georgopapadakou, N. H. (1991) Effects of quinolones on nucleoid segregation in Escherichia coli. Antimicrob, Agent Chemo 35, 2645–2648.

    Article  CAS  Google Scholar 

  26. Miller, C. A., Beaucage, S. L. and Cohen, S. N. (1990) Role of DNA superhelicity in partitioning of the pSC101 plasmid,Cell 62, 127–133.

    Article  PubMed  CAS  Google Scholar 

  27. Mulder, E., El’Bouhali, M., Pas, E. and Woldringh, C. L. (1990) The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids,Mol. Gen. Genet 221, 87–93.

    Article  CAS  Google Scholar 

  28. Ogura, T., Niki, H., Mori, H., Morita, M., Hasegawa, M., Ichinose, C. and Hiraga, S. (1990) Identification and characterization of gyrB mutants of Escherichia coli that are defective in partitioning of mini-F plasmids,J.Bact 172, 1562–1568.

    PubMed  CAS  Google Scholar 

  29. Hirota, Y., Ryter, A. and Jacob, F. (1968) Thermosensitive mutants of Escherichia soli affected in the process of DNA synthesis and cellular division,Cold Spring Harbor Symp Quant. Biol 33, 1496–1505.

    Google Scholar 

  30. Hussain, K., Elliott, E.J. and Salmond, G.P. (1987) The parD- mutant of Escherichia soli also carries a gyrAam mutation. The complete sequence of gyrA, Mol. Microbiol 1,259–273.

    Article  PubMed  CAS  Google Scholar 

  31. Kato, J.-i., Nishimura, Y. and Suzuki, H. (1989) Escherichia soli parA is an allele of the gyrB gene,Mol. Gen. Genet 217, 178–181.

    Article  PubMed  CAS  Google Scholar 

  32. Kato, J.-i., Nishimura, Y., Imamura, R., Niki, H., Hiraga, S. and Susuki, H. (1990) New topoisomerase essential for chromosome segregation in Escherichia soli, Cell 63, 393–404.

    Article  PubMed  CAS  Google Scholar 

  33. Schmid, M.B. (1990) A Locus Affecting Nucleoid Segregation in Salmonella typhimurium, J. Bast 172, 5416–5424.

    CAS  Google Scholar 

  34. Adams, D.E., Shekhtman, E.M., Zechiedrich, E.L., Schmid, M.B., and Cozzarelli, N.R. (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication,Cell 71, 277–288.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, J.C. and Liu, L.F. (1990) Genetics of DNA topoisomerases, In DNA topology and its biological effects, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 321–340.

    Google Scholar 

  36. Champoux, J.J. and Been, M.D. (1980) Topoisomerases and the swivel problem, in Mechanistic studies of DNA replication and genetic recombination: ICN-UCLA symposia on molecular and cellular biology, Acadmeic Press, New York,.

    Google Scholar 

  37. Peter, B.J., Ullsperger, C.J., Hiasa, H., Marians, K.J., and Cozzarelli, N.R. (1998) The structure of supercoiled intermediates in DNA replication. Cell (submitted).

    Google Scholar 

  38. Hiasa, H. and Marians, K.J. (1996) Two distinct modes of strand unlinking during thera-type DNA replication, J. Biol. Chem 271, 21529–21535.

    Article  PubMed  CAS  Google Scholar 

  39. Goss, W.A., and Cook, T.M. (1975) Mechanism of action of antimicrobial and antitumor agents. In Antibioltics vol. III, Springr-Verlag, New York, pp. 174–196.

    Google Scholar 

  40. Khodursky, A.B. and Cozzarelli, N.R. (1998) The mechanism of inhibition of topoisomerase IV by quinolone antibiotics, J. Biol. Chem (submitted).

    Google Scholar 

  41. Champoux J.J. (1998) Domains of human topoisomerase I and associated functions, Prog. Nucleic Acid Res. Mol. Biol 60, 111–132.

    Article  PubMed  CAS  Google Scholar 

  42. Huang, W.M., Libbey, J.L., van der Hocven, P. and Yu SX (1998) Bipolar localization of Bacillus subtilis topoisomerase IV, an enzyme required for chromosome segregation, Proc. Natl. Acad. Sci. USA 95, 4652–4657.

    Article  PubMed  CAS  Google Scholar 

  43. Sundin, O. and Varshaysky, A. (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of final stages of SV40 DNA replication,Cell 25, 659–669.

    Article  PubMed  CAS  Google Scholar 

  44. Uemura, T. and Yanagida, M. (1986) Mitotic spindle pulls but fails to separate chromosome in type II DNA topoisomerase mutants: uncoordinated mitosis, EMBO J 5, 1003–1010.

    PubMed  CAS  Google Scholar 

  45. Holm, C. (1994) Coming undone: how to untangle a chromosome, Cell 77, 955–957.

    Article  PubMed  CAS  Google Scholar 

  46. Worcel, A. and Burgi, E. (1972) On the structure of the folded chromosome of Escherichia coli, J. Mol. Biol 71, 127–147.

    Article  PubMed  CAS  Google Scholar 

  47. Sinden, R. and Pettijohn, D. (1981) Chromosomes in living cells are segregated into domains of supercoiling,Proc. Natl. Acad. Sci.78, 224–228.

    Google Scholar 

  48. Kavenoff, R. and Bowen, B.C. (1976) Electron Microscopy of Membrane-Free Folded Chromosomes from Escherichia coli, Chromosoma 59, 89–101.

    Article  PubMed  CAS  Google Scholar 

  49. Lydersen, B.K. and Pettijohn, D.E. (1977) Interactions stabilizing DNA tertiary structure in the Escherichia coli chromosome investigated with ionizing radiation, Chromosoma 62, 199–215.

    Article  PubMed  CAS  Google Scholar 

  50. Rybenkov, V.V., Ullsperger, C.J., Vologodskii, A.V. and Cozzarelli, N.R. (1997) Simplification of DNA topology below equilibrium values by tryp II topoisomerases, Science 277, 690–693.

    Article  PubMed  CAS  Google Scholar 

  51. Ullsperger, C., and Cozzarelli, N.R. (1996) Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli, J. Biol. Chem 271, 31549–31555.

    Article  PubMed  CAS  Google Scholar 

  52. Bohrmann, B., Haider, M., and Kellenberger, E. (1993) Concentration evaluation of chromatin in unstained resin-embedded sections by means of low-dose ratio-contrast imaging in STEM, Ultramicroscopy 49, 235–251.

    Article  PubMed  CAS  Google Scholar 

  53. Hildebrandt, E.R., and Cozzarelli, N.R. (1995) Comparison of recombination in vitro and in Escherichia coli cells: measure of the effective concentration of DNA in vivo, Cell 81, 331–340.

    Article  PubMed  CAS  Google Scholar 

  54. Lin, D.C. and Grossman, A. (1997) Identification and characterization of a bacterial chromosome partitioning site,Cel1 92, 675–685.

    Article  Google Scholar 

  55. Niki, H., and Hiraga, S. (1998) Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning,Genes Dev 12, 1036–1045.

    Article  PubMed  CAS  Google Scholar 

  56. Gordon, G.S., Stinikov, D., Webb, C.D., Teleman, A., Straight, A., Losick, R., Murray, A.W. and Wright, A. (1997) Chromosomes and low-copy number plasmid segregation in Escherichia coli: visual evidence for distinct mechanisms, Cell 90, 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  57. Trun, N.J and Marko, J. (1998) The architecture of a functional chromosome, ASM News 64, 276–283.

    Google Scholar 

  58. Hirano, T., Mitchison, T.J., and Swedlow, J.R. (1995) The SMC family: From chromosome condensatio to dosage compensation,Curr. Op. Cell Biol 7, 329–326.

    Article  PubMed  CAS  Google Scholar 

  59. Samejima, I., Matsumoto, T., Nakaseko, Y., Beach, D., and Yanagida, M. (1993) Identification of seven new cut genes involved in Schizosaccharomyces pombe mitosis, J. Cell Science 105, 135–143.

    PubMed  Google Scholar 

  60. Larionov, V.L., Karpova, T.S., Kouprina, N. Y. and Jouravleva, G.A.(1985) A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids, Current Genetics 10, 15–20.

    Article  PubMed  CAS  Google Scholar 

  61. Hirano, T. and Mitchison, T.J. (1994) A heterodimeric coiled-coil protein required for mitotic chromsome condensation in vitro, Cell 79, 449–458.

    Article  PubMed  CAS  Google Scholar 

  62. Hu, K.H., Liu, E., Dean, K., Gingras, M., Degraff, W. and Trun, N. J. (1996) Overproduction of three genes leads to camphor resistence and chromosome condensation in Escherichia coli, Genetics 143, 1521–1532.

    PubMed  CAS  Google Scholar 

  63. Summers, D.K. and Sherratt, D.J. (1984) Multimerization of high copy number plasmids causes instability: ColE 1 encodes a determinant essential for plasmid monomerization and stability, Cell 36, 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  64. Summers, D.K., Beaton, C.W.H, and Withers, H.L. (1993) Multicopy plasmid instability: the dimer catastrophe hypothesis, Mol. Microbiol 8, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  65. Austin, S., and Abeles, A. (1983) Partition of unit-copy miniplasmids to daughter cells. I. Pl and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition, J. Mol. Biol 169, 353–372.

    Article  PubMed  CAS  Google Scholar 

  66. Wasserman, S.A., and Cozzarelli, N.R. (1986) Biochemical topology: Applications to DNA recombination and replication, Science 232, 951–960.

    Article  PubMed  CAS  Google Scholar 

  67. Colloms, S.D., Bath, J. and Sherratt, D.J. (1997) Topological selectivity in Xer site specific recombination, Cell 88, 855–864.

    Article  PubMed  CAS  Google Scholar 

  68. Leslie, N.R. and Sherratt, D.J. (1995) Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif, EMBO J 14, 1561–1570.

    PubMed  CAS  Google Scholar 

  69. Austin, S.J. (1988) Plasmid partition,Plasmid 20, 1–9.

    Article  PubMed  CAS  Google Scholar 

  70. Drlica, K. (1987) Escherichia coli and Solmonella typhimurium, Am. Soc. Microbiol, Washington DC, p.806.

    Google Scholar 

  71. Dai, H., Chow, T-Y., Liao, H-J., Chen, Z-Y., and Chiang, K-S. (1988) Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cfl6-v1 into the Xanthomonas campestris pv. citri chromosome, Virology 167, 613–620.

    PubMed  CAS  Google Scholar 

  72. Clerget, M. (1991) Site-specific recombination promoted by a short DNA segment of plasmid RI and by a homologous segment in the terminus region of the Escherichia coli chromosome,New Biol 3, 780–788.

    PubMed  CAS  Google Scholar 

  73. Kuempel, P.L., Henson, J.M., Dircks, L., Tecklenburg, M. and Lim, D.F. (1991) dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli, New Biol 3, 799–811.

    PubMed  CAS  Google Scholar 

  74. Sherratt, D.J., Arciszewska, L.K., Blakely, G., Colloms, S., Grant, K., Leslie, N. and McCulloch, R. (1995) Site-specific recombination and circular chromosome segregation, Philos. Trans. R. Soc. Lond. B. Biol. Sci 347, 37–42

    Article  PubMed  CAS  Google Scholar 

  75. Austin, S., Ziese, M., and Sternberg, N. (1981) A novel role for site-specific recombination in maintenance of bacterial replicons, Cell 25, 729–736.

    Article  PubMed  CAS  Google Scholar 

  76. Blakely, G.W. and Sherratt, D.J. (1994) Interactions of the site-specific recombinases XerC and XerD with the recombination site dif, Nuc. Acids Res 22, 5613–5620.

    Article  CAS  Google Scholar 

  77. Cornet, F., Louan, J., Patte, J. and Louarn, J.M. (1996) Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome, Genes Dey 10,1152–1161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alexandrov, A.I. et al. (1999). Mechanisms of Separation of the Complementary Strands of DNA During Replication. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics