Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 52))

  • 405 Accesses

Abstract

The evolution of an initially-turbulent wake behind a bluff-body is a useful model for a broad range of flows involving the decay of a local turbulent patch in a stable background density gradient. Such flows encompass many atmospheric and oceanic applications, the latter including also the evolution of wakes of submerged bodies.

In the case of the towed-sphere wake, the initially-turbulent motions evolve into a chain of alternate-signed vortices that remain close to the centreline. The characteristic, well-ordered wake is generated regardless of the relative magnitude of the background density gradient (provided it is nonzero), because eventually, buoyancy forces dominate the decaying flow. The wake geometry appears to be very stable, and the basic pattern has a very long persistence time.

When the large scale structures are generated in the presence of weaker background turbulence, then a vortex pattern detection problem inevitably arises as a requirement for identifying the foreground motions and their possible interactions with the ambient. The space of independent parameter combinations is now large, but experiments can help to identify relevant dimensionless groups.

Although the horizontal motions are most well-known, and are the easiest to visualize, the structure in the vertical direction is also important in determining the dynamics, stability and longevity of the wake in both quiet and noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonneton P., Chomaz J.M. and Hopfinger E.J. (1993) Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech., 254, 23–40.

    Article  ADS  Google Scholar 

  • Browand F.K., Guyomar D., and Yoon S.C. (1987) The behaviour of a turbulent front in a stratified fluid: experiments with an oscillating grid. J. Geophys. Res., 92, 5329–5341.

    Article  ADS  Google Scholar 

  • Chomaz J.M., Bonneton P., Butet A., and Hopfinger E.J. (1993) Vertical diffusion in the far wake of a sphere moving in a stratified fluid. Phys. Fluids, 5, 2799–2806.

    Article  ADS  Google Scholar 

  • Chomaz J.M., Bonneton P., and Hopfinger E.J.(1993) The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech., 254, 1–21.

    Article  ADS  Google Scholar 

  • Fincham A.M., Maxworthy T., and Spedding G.R. (1996) Energy dissipation and vortex structure in freely-decaying, stratified grid turbulence. Dyn. Atmos. Ocean, 23, 155–169.

    Article  ADS  Google Scholar 

  • Flór J.B., Govers W.S.S., van Heijst G.J.F., and van Sluis R. (1993) Formation of a tripolar vortex in a stratified fluid. Appl. Sci. Res., 51, 405–409.

    Article  Google Scholar 

  • Flór J.B. and van Heijst G.J.F. (1994) Experimental study of dipolar vortex structures in a stratified fluid. J. Fluid Mech., 279, 101–134.

    Article  ADS  Google Scholar 

  • Flór J.B. and van Heijst G.J.F. (1996) Stable and unstable monopolar vortices in a stratified fluid. J. Fluid Mech., 311, 257–287.

    Article  MathSciNet  ADS  Google Scholar 

  • Hopfinger E.J., Flór J.B., Chomaz J.M. and Bonneton P. (1991) Internal waves generated by a moving sphere and its wake in a stratified fluid. Exp. Fluids, 11, 255–261.

    Article  Google Scholar 

  • Kimura Y. and Herring J.R. (1996) Diffusion in stably stratified turbulence. J. Fluid Mech., 328, 253–269.

    Article  ADS  MATH  Google Scholar 

  • Lighthill M.J. (1996) Internal waves and related initial-value problems. Dyn. Atmos. Ocean, 23, 3–17.

    Article  ADS  Google Scholar 

  • Lin J.T. and Pao Y.H. (1979) Wakes in stratified fluids: a review. Ann. Rev. Fluid Mech., 11, 317–338.

    Article  ADS  Google Scholar 

  • Lin Q., Lindberg W.R., Boyer D.L., and Fernando H.J.S. (1992) Stratified flow past a sphere. J. Fluid Mech., 240, 315–354.

    Article  ADS  Google Scholar 

  • Liu Y.N., Maxworthy T., and Spedding G.R. (1987) Collapse of a turbulent front in stratified fluid 1. Nominally two-dimensional evolution in a narrow tank. J. Geophys. Res., 92, 5427–5433.

    Article  ADS  Google Scholar 

  • Majda A.J. and Grote M.J. (1997) Model dynamics and vertical collapse in decaying strongly stratified flows. Phys. Fluids. (in press).

    Google Scholar 

  • Spedding G.R. (1997) The evolution of initially-turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech., 337, 283–301.

    Article  ADS  Google Scholar 

  • Spedding G.R., Browand F.K., and Fincham A.M. (1996a) The long-time evolution of the initially-turbulent wake of a sphere in a stable stratification. Dyn. Atmos. Ocean, 23, 171–182.

    Article  ADS  Google Scholar 

  • Spedding G.R., Browand F.K., and Fincham A.M. (1996b) Turbulence, similarity scaling and vortex geometry in the wake of a sphere in a stably-stratified fluid. J. Fluid Mech., 314, 53–103.

    Article  ADS  Google Scholar 

  • Staquet C. (1995) Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid Mech., 296, 73–126.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sysoeva E.Y. and Chashechkin Y.D. (1991) Vortex systems in the stratified wake of a sphere. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 4, 82–90.

    Google Scholar 

  • Voropayev S.I. and Afanasyev Y.D. (1992) Two-dimensional vortex-dipole interactions in a stratified fluid. J. Fluid Mech., 236, 665–689.

    Article  ADS  Google Scholar 

  • Voropayev S.I. and Afanasyev Y.D. (1994) Vortex Structures in a Stratified Fluid. Chapman & Hall.

    Google Scholar 

  • Voropayev S.I., Afanasyev Y.D., and Filippov I.A. (1991) Horizontal jets and vortex dipoles in a stratified fluid. J. Fluid Mech., 227, 543–566.

    Article  ADS  Google Scholar 

  • Xu Y., Fernando H.J.S., and Boyer D.L. (1995) Turbulent wakes of stratified flow past a cylinder. Phys. Fluids, 9, 2243–2255.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Spedding, G.R. (1999). Vortex Wakes in Stably-Stratified Fluids. In: Sørensen, J.N., Hopfinger, E.J., Aubry, N. (eds) IUTAM Symposium on Simulation and Identification of Organized Structures in Flows. Fluid Mechanics and Its Applications, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4601-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4601-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5944-2

  • Online ISBN: 978-94-011-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics