Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 529))

Abstract

Density functional approximations for the Helmholtz free energy in systems of hard spheres and hard disks are built, within the Fundamental Measure Theory, to reproduce the exact free energy of a cavity which cannot hold more than one particle. These systems, known as the zero-dimensional (0D) limit of hard particles, have an excess free energy from the impossibility of multiple occupation of the cavity, which depends only on the average number of particles in the cavity, at equilibrium with a reservoir. The structure of the FMT density functionals may be completely determined by this 0D limit. The bulk equation of state is a particular output of the approximation, rather than an input to build the density functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Hansen and I.R. McDonald, “Theory of Simple Liquids”, Second Edition, Academic Press, London, (1986).

    Google Scholar 

  2. See the recent collection of reviews, Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Dekker, 1992), and in particular the review by R. Evans.

    Google Scholar 

  3. H. Reiss, H. Frisch, and J.L. Lebowitz, J.Chem.Phys. 31, 369 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Reiss, J.Phys.Chem. 96, 4736(1992)

    Article  Google Scholar 

  5. Y. Rosenfeld, J.Chem.Phys. 89, 4272 (1988).

    Article  ADS  Google Scholar 

  6. P. Tarazona and Y. Rosenfeld, Phys. Rev. E 55, R4873 (1997).

    Article  ADS  Google Scholar 

  7. Y. Rosenfeld, Phys.Rev.Lett. 63, 980 (1989)

    Article  ADS  Google Scholar 

  8. Y. Rosenfeld J.Chem. Phys. 98, 8126 (1993)

    Article  ADS  Google Scholar 

  9. Y. Rosenfeld Phys.Rev.E 50, R3318 (1994)

    Article  ADS  Google Scholar 

  10. Y. Rosenfeld J.Phys.Cond.Matter 8, 9287 (1996)

    Article  ADS  Google Scholar 

  11. Y. Rosenfeld J.Phys.Cond.Matter 8, L795 (1996).

    Article  ADS  Google Scholar 

  12. Y. Rosenfeld, Phys.Rev.A 42, 5978 (1990).

    Article  ADS  Google Scholar 

  13. E. Kierlik and M.L. Rosinberg, Phys.Rev.A 42, 3382 i (1990)

    Article  ADS  Google Scholar 

  14. E. Kierlik and M.L. Rosinberg, Phys.Rev.A 44, 5025 (1991).

    Article  ADS  Google Scholar 

  15. S. Phan, E. Kierlik, M.L. Rosinberg, D. Bildstein, and G. Kahl, Phys.Rev.E 48, 618 (1993).

    Article  ADS  Google Scholar 

  16. Y. Rosenfeld, M. Schmidt, H. Löwen and P. Tarazona, J. Phys.: Cond. Matter 8, L577 (1996)

    Article  ADS  Google Scholar 

  17. Y. Rosenfeld, M. Schmidt, H. Löwen and P. Tarazona Phys.Rev.E 55, 4245 (1997)

    Article  ADS  Google Scholar 

  18. M.Schmidt, Ph.D. Thesis, 1996.

    Google Scholar 

  19. P. Tarazona, Molec.Phys. 52, 81 (1984)

    Article  ADS  Google Scholar 

  20. P. Tarazona, Phys.Rev.A 31, 2672 (1985).

    Article  ADS  Google Scholar 

  21. W.A. Curtin and N.W. Ashcroft, Phys.Rev.A 32, 2909 (1985).

    Article  ADS  Google Scholar 

  22. J.K. Perçus, J.Stat.Phys. 15, 505 (1976).

    Article  ADS  Google Scholar 

  23. A. Gonzalez, J.A. White and R. Evans, J.Phys.: Cond. Matter 9, 2375 (1997).

    Article  ADS  Google Scholar 

  24. J.A. Cuesta and Yuri Martinez-Raton, Phys.Rev.Letters 78, 3681 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tarazona, P., Rosenfeld, Y. (1999). Free Energy Density Functional from 0D Cavities. In: Caccamo, C., Hansen, JP., Stell, G. (eds) New Approaches to Problems in Liquid State Theory. NATO Science Series, vol 529. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4564-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4564-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5671-4

  • Online ISBN: 978-94-011-4564-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics