Skip to main content

On Microscopic Insights into Metal Cluster Fragmentation

  • Conference paper
Nuclear Matter in Different Phases and Transitions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 95))

  • 231 Accesses

Abstract

Metal cluster fragmentation has been a topic of intense experimental activity for many years [1,2,3]. In many early investigations the excitation process, for example through a low fluence nanosecond laser, leads to an excited cluster in which both electronic and ionic degrees of freedom were simultaneously excited. The such produced highly charged cluster was thus already at thermal equilibrium and its further deexcitation proceeded by evaporation, fission or fragmentation, and could be accessed to by statistical concepts [4]. With the advent of more instantaneous excitation processes, namely at a time scale typical of electronic characteristic times, the situation is somewhat different as excitation and initial ionization proceed at once, thus placing the charged cluster in a definitively far from equilibrium state. The understanding of the further evolution of the system thus requires a proper description of the electronic degrees of freedom and of their coupling to ionic o nes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1996) Large clusters of atoms and molecules, NATO ASI-E313, Martin, T.P., ed., Kluwer, Dordrecht.

    Google Scholar 

  2. (1997) Small particles and inorganic clusters, ISSPIC8, Andersen, H.H., ed., Zeit. Phys. D 40, 1.

    Google Scholar 

  3. Näher, U., et al., (1997) Phys. Rep. 285, 245.

    Article  ADS  Google Scholar 

  4. Gross, D.H.E., these proceedings.

    Google Scholar 

  5. Chandezon, F., et al., (1995) Phys. Rev. Lett. 74, 3784.

    Article  ADS  Google Scholar 

  6. Baumert, T., and Gerber, G., (1995) Adv. At. Mol. Opt. Phys. 35, 163.

    Article  ADS  Google Scholar 

  7. Schlipper, R., et al., (1998) Phys. Rev. Lett. 80, 1194.

    Article  ADS  Google Scholar 

  8. Bonačić-Koutecký, V., Fantucci, P., and Koutecký, J., (1991) Chem. Rev. 91, 1035.

    Article  Google Scholar 

  9. Gross, E.K.U., et al., (1996) Top. Curr. Chem. 181, 81.

    Article  Google Scholar 

  10. Barnett, R.N., et al., (1991) J. Chem. Phys. 94, 608.

    Article  ADS  Google Scholar 

  11. Car, R., and Parinello, M., (1985) Phys. Rev. Lett. 55, 2471.

    Article  ADS  Google Scholar 

  12. Brack, M., (1993) Rev. Mod. Phys. 65, 677.

    Article  ADS  Google Scholar 

  13. Yabana, K., et al., (1996) Phys. Rev. B 54, 4484.

    Article  ADS  Google Scholar 

  14. Saalmann, U., and Schmidt, R., (1996) Z. Phys. D 38, 153.

    Article  ADS  Google Scholar 

  15. Calvayrac, F., Reinhard, P.G., and Suraud, E., (1998), submitted to J. Phys. B.

    Google Scholar 

  16. Gunnarsson, O., and Lundqvist, B.I., (1976) Phys. Rev. B 13, 4274.

    Article  ADS  Google Scholar 

  17. Ashcroft, N.W., and Langreth, D.C., (1967) Phys. Rev. 155, 682.

    Article  ADS  Google Scholar 

  18. Calvayrac, F., et al., (1997) Ann. Phys. (N.Y.) 255, 125.

    Article  ADS  Google Scholar 

  19. Ullrich, C.A., Reinhard, P.G., and Suraud, E., (1997) J. Phys. B 30, 5043.

    Article  ADS  Google Scholar 

  20. Reinhard, P.G., Suraud, E., and Ullrich, C.A., (1998) Euro. Phys. Journ. D 1, 303.

    Article  ADS  Google Scholar 

  21. (1982) TDHF and beyond, Goeke, K., Reinhard P.-G., eds., Lecture Notes in Physics 171, Springer, Berlin.

    Google Scholar 

  22. Bertsch, G.F., et al., (1988) Phys. Rep. 160, 189.

    Article  ADS  Google Scholar 

  23. Bonasera, A., Gulminelli, F., Molitoris, J., (1994) Phys. Rep. 243, 1.

    Article  ADS  Google Scholar 

  24. Gross, M., and Guet, C., (1995) Z. Phys. D 33, 289.

    Article  ADS  Google Scholar 

  25. Féret, L., et al., (1996) J. Phys. B 29, 4477.

    Article  ADS  Google Scholar 

  26. Ichimaru, S., et al., (1987) Phys. Rep. 149, 91.

    Article  ADS  Google Scholar 

  27. Pines, D., and Nozieres, P., The theory of quantum liquids, Addison-Wesley.

    Google Scholar 

  28. Welke, G., et al., (1989) Phys. Rev. C 40, 2611.

    Article  ADS  Google Scholar 

  29. Clavayrac, F., et al., (1998), submitted to Euro. Phys. Journ. D.

    Google Scholar 

  30. Kohl, C., Calvayrac, F., Reinhard, P.-G., and Suraud, E., (1998) Surf. Science, in press.

    Google Scholar 

  31. Ditmire, T., et al., (1997) Nature 386, 54.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Calvayrac, F., Domps, A., Suraud, E., Reinhard, P.G., Ullrich, C.A. (1999). On Microscopic Insights into Metal Cluster Fragmentation. In: Blaizot, JP., Campi, X., Ploszajczak, M. (eds) Nuclear Matter in Different Phases and Transitions. Fundamental Theories of Physics, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4556-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4556-5_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5934-3

  • Online ISBN: 978-94-011-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics