Skip to main content

Large-Eddy Simulations of Incompressible and Compressible Turbulence

  • Chapter
Transition, Turbulence and Combustion Modelling

Part of the book series: ERCOFTAC Series ((ERCO,volume 6))

Abstract

Direct-numerical simulations of turbulence (DNS) consist in solving explicitly all the scales of motion, from the largest l I to the Kolmogorov dissipative scale l D . It is well known from the statistical theory of turbulence that l I /l D scales like R 3/4 l , where R l is the large-scale Reynolds number ul I /ν based upon the rms velocity fluctuation u′. Therefore, the total number of degrees of freedom necessary to represent the whole span of scales of a three-dimensional turbulent flow is of the order of R 9/4 l in three dimensions. In the presence of obstacles, around a wing or a fuselage for instance, and if one wants to simulate three-dimensionally all motions ranging from the viscous thickness δ v = ν/v * ≈ 10−6 m up to 10 m, it would be necessary to put 1021 modes on the computer. Right now, the calculations done to the expense of not excessive computing times on the biggest machines take about 2. 107 grid points, which is very far from the above estimation. Even with the unprecedented improvement of scientific computers, it may take several tenths of years (if it becomes ever possible) before DNS permit to simulate situations at Reynolds numbers comparable to those encountered in natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbà, A., Cercignani, C., Valdettaro, L., and Zanini, P. (1997) LES of turbulent thermal convection, in J.P. Chollet, P.R. Voke and L. Kleiser (eds.), Direct and Large Eddy Simulation II, Kluwer Academic Publishers, pp. 147–156.

    Google Scholar 

  2. Abid, M. and Brachet, M.E. (1992) Mécanisme de génération des jets latéraux dans les jets axisymetriques forcés, C.R.Acad.Sci.Paris.

    Google Scholar 

  3. R.A. Antonia, M. Teitel, J. Kim, and L.W.B. Browne, Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236 (1992) 579–605.

    Article  ADS  Google Scholar 

  4. Airiau, C., PhD, Toulouse University (1994).

    Google Scholar 

  5. Arnal, M., and Friedrich, R., 1993 Large-eddy simulation of a turbulent flow with separation. In Turbulent Shear Flows 8 (ed. F. Durst, R. Friedrich, B.E. Launder et al., p. 169, Springer.

    Google Scholar 

  6. Bandyopadhyay, P.R. (1991) Instabilities and large structures in reattaching boundary layers. AIAA Journal, 29, 1149–1155.

    Article  ADS  Google Scholar 

  7. Barenblatt, G., J. Fluid Mech., 248 (1993), 513–529.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bardina, J., Ferziger, J.H., Reynolds, W.C. (1980) Improved subgrid model for large-eddy simulation, AIAA paper N o 80-1357.

    Google Scholar 

  9. Bartello, P., Métais, O., and Lesieur, M. (1994) Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 1–29.

    Article  MathSciNet  ADS  Google Scholar 

  10. Basdevant, C., Sadourny R. (1983) Modélisation des échelles virtuelles dans la simulation numérique des écoulements bidimensionnels. J. Mec. Theor. et Appl., Numéro Spécial, 243–269.

    Google Scholar 

  11. Bech, K.H. and Andersson, H.I. (1997) Turbulent plane Couette flow subject to strong system rotation, J. Fluid Mech. 347, 289–314.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bernal, L.P., and Roshko, A. (1986) Streamwise vortex structure in plane mixing layer, J. Fluid Mech. 170, 499–525.

    Article  ADS  Google Scholar 

  13. Bertolotti, P. & Herbert, T., Theoret. and Comp. Fluids Dynamics, 3 (1991) 117–124.

    Article  ADS  MATH  Google Scholar 

  14. Blumen, W., 1970, Shear-layer instability of an inviscid compressible fluid, J. Fluid Mech., 40, pp 769–781.

    Article  ADS  MATH  Google Scholar 

  15. Bogdanoff, D.W., 1983, Compressibility effects in turbulent shear layers, AIAA J., 21, pp 926–927.

    Article  ADS  Google Scholar 

  16. Brown, G., and Roshko, A. (1974) On density effects and large structure in turbulent mixing layers, J. Fluid Mech. 64, 775–816.

    Article  ADS  Google Scholar 

  17. Broze, G. and Hussain, F. (1996) Transition to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis. J.Fluid Mech, 311, pp. 37–71.

    Article  MathSciNet  ADS  Google Scholar 

  18. Choi, K.S. and Fujisawa, N., 1993, Possibility of Drag Reduction using a d-type Roughness, Appl. Sci. Res., 50, pp. 315–324.

    Google Scholar 

  19. Chollet, J.P. and Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (1981) 2747–2757.

    Article  ADS  Google Scholar 

  20. Chollet, J.P. and Lesieur, M., Modélisation sous maille des flux de quantité de mouvement et de chaleur en turbulence tridimensionnelle isotrope. La Météorologie 29–30 (1982) 183–191.

    Google Scholar 

  21. Clark, R.A., Ferziger, J.H., and Reynolds, W.C. (1979) Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech. 91, 1–16.

    Article  ADS  MATH  Google Scholar 

  22. Comte, P., Ducros, F., Silvestrini, J., David, E., Lamballais, E., Métais, O. and Lesieur, M. (1994) Simulation des grandes échelles d’écoulements transitionnels, AGARD Conference Proceedings 551, pp. 14.1–14.12.

    Google Scholar 

  23. Comte, P., Fouillet, Y. and Lesieur, M., (1992) Simulation numérique des zones de mélange compressibles. Revue scientifique et technique de la defense, 3ème trimestre, 43–63.

    Google Scholar 

  24. P. Comte, M. Lesieur, and E. Lamballais, Large and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A 4 (1992) 2761–2778.

    Article  ADS  Google Scholar 

  25. Comte, P., Silvestrini, J.H. and Lamballais, E., 1995, A Straightforward 3D Multi-block Unsteady Navier-Stokes Solver for a Direct and Large-Eddy Simulations of Transitional and Turbulent Compressible Flows, in 77th. AGARD Fluid Dynamic Panel Symposium “Progress and Challenges in CFD Methods and Algorithms”, Seville, Spain, pp. 2–5.

    Google Scholar 

  26. Cousteix, J., Turbulence et couche limite, CEPADUES (1989).

    Google Scholar 

  27. Crow, S.C. and Champagne, F.H. (1971) Orderly structure in jet turbulence. J.Fluid Mech, 48, pp. 547–591.

    Article  ADS  Google Scholar 

  28. David, E. (1993) Modélisation des Ecoulements Compressibles et Hypersoniques: une Approche Instationnaire. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  29. Deardorff, J.W. (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds number, J. Fluid Mech. 41, 453–80.

    Article  ADS  MATH  Google Scholar 

  30. Delcayre, F., and Lesieur, M. (1997) Topological features in the reattachment region of a backward-facing step. In Advances in DNS/LES, C. Liu and Z. Liu, eds., Greyden Press, Columbus, pp. 425–432.

    Google Scholar 

  31. Delcayre, F. (1997) Topology of coherent vortices in the reattachment region of a backward-facing step. Eleventh Symposium on Turbulent Shear Flows, Grenoble, France, 8–10 September, pp. 26-24/26-29.

    Google Scholar 

  32. Delcayre, F., (1997) Topological features in the reattachment region of a backward-facing step. In Advances in DNS/LES, C. Liu and Z. Liu, eds., Greyden Press, Columbus, pp. 425–432.

    Google Scholar 

  33. Domaradzki, J.A., Metcalfe, R.W., Rogallo R.S. & J.J. Riley 1987 Analysis of subgrid-scale eddy viscosity with the use of results from direct numerical simulations. Phys. Rev. Lett. 58, pp 547–550.

    Article  ADS  Google Scholar 

  34. Dubief, Y. and P. Comte, 1997, Large-Eddy simulation of a boundary layer flow passing over a groove, in Turbulent Shear Flows 11, Grenoble, France, pp. 1-1/1-6.

    Google Scholar 

  35. Ducros, F., Comte, P., and Lesieur, M., 1995, Direct and large-eddy simulations of a supersonic boundary layer. Selected Proceedings of Turbulent Shear Flows 9, pp. 283–300, Springer.

    Google Scholar 

  36. Ducros, F., Comte, P., and Lesieur, M. (1996) Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate, J. Fluid Mech. 326, 1–36.

    Article  ADS  MATH  Google Scholar 

  37. El-Hady, N.M., and Zang T.A. (1995) Large-eddy simulation of nonlinear evolution and breakdown to turbulence in high-speed boundary layers, Theoret. Comput. Fluid Dynamics 7, 217–240.

    Article  ADS  MATH  Google Scholar 

  38. Erlebacher G., Hussaini M.Y., Speziale C.G., Zang T.A., ICASE Report, 87-20, 1987.

    Google Scholar 

  39. Erlebacher G., Hussaini M.Y., Speziale C.G., Zang T.A., J. Fluid Mech., 238, 1992, 155.

    Article  ADS  MATH  Google Scholar 

  40. Favre A., J. de Mécanique, 4, 1965, 361.

    Google Scholar 

  41. Fouillet, Y. (1992) Contribution à l’étude par expérimentation numérique des écoulements cisaillés libres. Effets de compressibilité. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  42. Garnier, E., Métais, O., and Lesieur, M. (1998) Synoptic and frontal-cyclone scale instabilities in baroclinic jet flows, J. Atmos. Sci., 55, No 8, pp. 1316–1335.

    Article  ADS  Google Scholar 

  43. Garnier, E., Métais, O., and Lesieur, M. (1996) Instabilités primaire et secondaire dans un jet barocline, C.R. Acad. Sci. Paris Série II b 323, 161–168.

    MATH  Google Scholar 

  44. Germano, M., (1992) Turbulence, the filtering approach, J. Fluid Mech. 238, 325–336.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Germano, M., Piomelli, U., Moin, P., and Cabot, W. (1991) A dynamic subgrid-scale eddy-viscosity model, Phys. Fluids A. 3(7), 1760–1765.

    Article  ADS  MATH  Google Scholar 

  46. Gonze, M.A. (1993) Simulation Numérique des Sillages en Transition à la Turbulence. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  47. Herbert, T., 1988, Secondary instability of boundary layers, Ann. Rev. Fluid Mech., 20 pp. 487–526.

    Article  ADS  Google Scholar 

  48. Hunt, J.C.R., Wray, A.A. and Moin, P. (1998) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Rep., CTR-S88, p. 193.

    Google Scholar 

  49. Johnston, J.P., Haileen, R.M., and Lezius, D.K. (1972) Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow, J. Fluid Mech., 56, 533–557.

    Article  ADS  Google Scholar 

  50. Jovic, S. and Driver, M. (1994) Backward-facing step measurement at low Reynolds number Re h = 5000, Ames Research Center, NASA Technical Memorandum, 108807.

    Google Scholar 

  51. Kim, J. 1983 The effect of rotation on turbulence structure. In Proc. 4th Symp. on Turbulent Shear Flows, Karlsruhe, pp. 6.14–6.19.

    Google Scholar 

  52. Kim, J., and Moser, R.D., 1989, On the secondary instability in plane Poiseuille flow, Phys. Fluids A, 1, pp. 775–777.

    Article  ADS  Google Scholar 

  53. Klebanoff, P.S., Tidstrom, K.D. and Sargent, L.M., 1962, The three-dimensional naure of boundary layer instability, J. Fluid Mech., 12, pp. 1–34.

    Article  ADS  MATH  Google Scholar 

  54. Kolmogorov, A.N. (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305.

    ADS  Google Scholar 

  55. Kraichnan, R.H. (1976) Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536.

    Article  ADS  Google Scholar 

  56. Kristoffersen, R. and Andersson, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163–197.

    Article  ADS  MATH  Google Scholar 

  57. Kuroda, A., 1990, Direct-numerical simulation of Couette-Poiseuille flows, PhD thesis, University of Tokyo, 1990.

    Google Scholar 

  58. Kusek, Corke and Reisenthel, Seeding of helical modes in the initial region of an axisymmetric jet (1990), Experiments in Fluids, 10, pp. 116–124.

    Google Scholar 

  59. Lamballais, E. (1996) Simulations numériques de la turbulence dans un canal plan tournant, PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  60. Lamballais, E., Lesieur, M., Métais, O. (1996) Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow, Int. J. Heat and Fluid Flow 17(3), 324–332.

    Article  Google Scholar 

  61. Lamballais, E., Lesieur, M., and Métais, O. (1996) Influence of a solid-body rotation upon coherent vortices in a channel, C. R. Acad. Sci. Série II b 323, 95–101.

    Google Scholar 

  62. Lamballais, E., Métais, O., and Lesieur, M. (1996) Influence of a spanwise rotation upon the coherent-structure dynamics in a turbulent channel flow, in J.P. Chollet, P.R. Voke and L. Kleiser (eds.), Direct and Large Eddy Simulation II, Kluwer Academic Publishers, pp. 225–236.

    Google Scholar 

  63. Lasheras, J.C., Lecuona A. and Rodriguez, P. (1991) Three dimensionnal structure of the vorticity field in the near region of laminar co-flowing forced jets. In The Global Geometry of Turbulence, edited by J. Jimenez (Plenum Press, New-York).

    Google Scholar 

  64. Le, H. and P. Moin, 1994, Direct Simulation of Turbulent Flow Over a Backward-Facing Step, NASA 58.

    Google Scholar 

  65. Le, H., Moin, P. and Kim, J. (1997) Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech., 330, 349–374.

    Article  ADS  MATH  Google Scholar 

  66. Lee, M., Reynolds, W.C. (1985) Bifurcating and blooming jets at high Reynolds number. Fifth Symp. on Turbulent Shear Flows, Ithaca, New York 1.7–1.12.

    Google Scholar 

  67. Lele, S.K., 1989, Direct-numerical simulation of compressible free-shear flows, A.I.A.A. Paper, no 89-0374.

    Google Scholar 

  68. Lele, S.K. (1992) Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. D.C. Leslie and G.L. Quarini, The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 91 (1979) 65–91.

    Article  ADS  MATH  Google Scholar 

  70. Lesieur, M. (1997) Recent approaches in large-eddy simulations of turbulence, in O. Métais and J. Ferziger (eds), New Tools in Turbulence Modelling, Les Editions de Physique, Springer-Verlag, pp. 1–28.

    Google Scholar 

  71. Lesieur, M. (1997) Turbulence in Fluids, Third Revised and Enlarged Edition, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  72. Lesieur, M., and Métais, O. (1996) New trends in large-eddy simulations of turbulence”, Annu. Rev. Fluid Mech. 28, 45–82.

    Article  ADS  Google Scholar 

  73. M. Lesieur and R. Rogallo, Large-eddy simulation of passive-scalar diffusion in isotropic turbulence. Phys. Fluids A 1 (1989) 718–722.

    Article  ADS  Google Scholar 

  74. Lesieur, M., Yanase, S., and Métais, O. (1991) Stabilizing and destabilizing effects of a solid-body rotation on quasi-two-dimensional shear layers, Phys. Fluids A 3, 403–407.

    Article  ADS  Google Scholar 

  75. Lessen, M., Fox, J. A. and Zien, H.M., 1965, On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid, J. Fluid Mech., 23, pp 355–367.

    Article  MathSciNet  ADS  Google Scholar 

  76. Lessen, M., Fox, J.A. and Zien, H.M., 1966, Stability of the laminar mixing of two parallel streams with respect to supersonic disturbances, J. Fluid Mech., 25, pp 737–742.

    Article  ADS  Google Scholar 

  77. Liepmann, D. and Gharib, M. (1992) The role of streamwise vorticity in the near-field entrainment of round jets. J.Fluid Mech, 245, pp. 643–668.

    Article  ADS  Google Scholar 

  78. Lilly, D.K. (1987) J.R. Herring and J.C. McWilliams (eds), Lecture Notes on Turbulence, World Scientific, pp. 171–218.

    Google Scholar 

  79. Liu, S., Meneveau, C., and Katz, J. (1994) On the properties of similarity subgrid-scale models as deduced from measurements in turbulent jet, J. Fluid Mech. 275,83–119.

    Article  ADS  Google Scholar 

  80. Lilly, D.K. (1992) A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A. 4(3), 633–635.

    Article  MathSciNet  ADS  Google Scholar 

  81. Lilly D.K., in Computational Fluids Dynamics, Les Houches; session LIX, 1993 Lesieur, Comte, Zin-Justin eds., Elsevier Sciences Publishers, B.V., 1996, p. 353.

    Google Scholar 

  82. Longmire, E.K. and Duong, L.H. (1996) Bifurcating jets generated with stepped and sawtooth nozzles. Phys. Fluids, 8(4), pp. 978–992.

    Article  ADS  Google Scholar 

  83. Lund, T.S., Wu, X. and Squires, K. D., 1996, On the Generation of Turbulent Inflow Conditions for Boundary Layer Simulations, Ann. Res. Briefs, Stanford, pp 287–295.

    Google Scholar 

  84. Martin, J.E. and Meiburg, E. (1991) Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J.Fluid Mech, 230, pp. 271–318.

    Article  ADS  MATH  Google Scholar 

  85. Mason, P. J. (1994) Large-eddy simulation: a critical review of the technique, Q.J.R. Meteorol. Soc. 120, 1–26.

    Article  ADS  Google Scholar 

  86. McWilliams, J.C. (1985) A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci. 42, 1773–1774.

    Article  ADS  Google Scholar 

  87. Métais, O., Flores, C., Yanase, S., Riley, J.J. and Lesieur, M. (1995) Rotating free shear flows Part 2: Numerical simulations, J. Fluid Mech. 293, 41–80.

    Article  Google Scholar 

  88. Métais, O. and Lesieur, M. (1986) Statistical predictability of decaying turbulence, J. Atmos. Sci. 43, 857–870.

    Article  ADS  Google Scholar 

  89. Métais, O., and Lesieur M. (1992) Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech 239, 157–194.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. Métais, O. Flores, C., Yanase, S., Riley, J.J. and Lesieur, M. (1995) Rotating free shear flows Part 2: Numerical simulations, J. Fluid Mech 293, 41–80.

    Article  Google Scholar 

  91. Michalke, A. and Hermann, G. (1982) On the inviscid instability of a circular jet with external flow. J.Fluid Mech, 114, pp. 343–359.

    Article  ADS  MATH  Google Scholar 

  92. Miyake, Y. and Kajishima, T. (1986) Numerical simulation of the effects of Coriolis force on the structure of turbulence, Bull. JSME, 29, No 256, 3347–3351.

    Article  Google Scholar 

  93. Moin, P., and Kim, J. (1982) Numerical investigation of turbulent channel flow, J. Fluid Mech. 118, 341–377.

    Article  ADS  MATH  Google Scholar 

  94. Moin P., Squires K., Cabot W., Lee S., Phys. Fluids A 3, 11, 1991, 2746.

    Article  Google Scholar 

  95. Monkewitz, P.A. and Pfizenmaier, E. (1991) Mixing by’ side jets’ in strongly forced and self-excited round jets. Phys. Fluids A, 3(5), pp. 1356–1361.

    Article  ADS  Google Scholar 

  96. Nakabayashi, K. and Kitoh, O. (1996) Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. J. Fluid Mech., 315, 1–29.

    Article  ADS  MATH  Google Scholar 

  97. Normand, X., 1990, Transition à la turbulence dans les écoulements cisaillés libres et pariétaux, PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  98. Normand X., Lesieur M., Theor. and Comp. Fluid Dyn., 3, 1992, 231.

    Article  ADS  MATH  Google Scholar 

  99. Orlanski, I. (1976) A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys., 21, 251–269.

    Article  ADS  MATH  Google Scholar 

  100. Papamoschou, D. and Roshko, A., 1988, The compressible turbulent shear layer: an experimental study, J. Fluid Mech., 197, pp 453–477.

    Article  ADS  Google Scholar 

  101. Parekh, D.E., Leonard, A. and Reynolds, W.C. (1988) Bifurcating jets at high Reynolds number. Air Force Office of Scientific Research contractor Rep noAF-F49620-84-K-0005 and no AF-F49620-86-K-0020.

    Google Scholar 

  102. Pearson, B.R., Elavarasan, R. Antonia, R.A., 1997, The Response of a Turbulent Boundary Layer to a Square Groove, J. Fluids Eng., To be published.

    Google Scholar 

  103. Petersen, R.A. (1978) Influence of wave dispersion on vortex pairing in a jet. J.Fluid Mech, 89, pp. 469–495.

    Article  ADS  Google Scholar 

  104. Piomelli, U. (1993) High Reynolds number calculations using the dynamic subgrid-scale stress model, Phys. Fluids A 5(6), 1484–1490.

    Article  ADS  Google Scholar 

  105. Piomelli, U. and Liu, J. (1995) Large-eddy simulation of rotating channel flows using a localized dynamic model, Phys. Fluids A, 7(4), 839–848.

    Article  ADS  MATH  Google Scholar 

  106. Rogers, M. & Moser, R., 1994 Phys. Fluids A, 6, 903.

    Article  ADS  MATH  Google Scholar 

  107. Sandham, N.D. and Reynolds, W.C., 1989, ‘The compressible mixing layer: linear theory and direct simulation, AIAA Paper 89-0371.

    Google Scholar 

  108. Sandham, N.D. and Reynolds, W.C., 1991, Three-dimensional simulations of large eddies in the compressible mixing layer, J. Fluid Mech., 224, pp 133–158.

    Article  ADS  MATH  Google Scholar 

  109. Silveira-Neto, A., Grand, D. Métais, O. Lesieur, M. (1993) A numerical investigation of the coherent structures of turbulence behind a backward-facing step. J.Fluid Mech, 256, pp. 1–55.

    Article  ADS  MATH  Google Scholar 

  110. Silvestrini, J., Comte, P., and Lesieur, M. (1995) DNS and LES of spatial incompressible mixing layer. Proc. of the 10th Symposium on Turbulent Shear Flows.

    Google Scholar 

  111. Smagorinsky, J. (1963) General circulation experiments with the primitive equations, Mon. Weath. Rev. 91,3, 99–164.

    Article  ADS  Google Scholar 

  112. Spalart, P.R. (1988) Direct Simulation of a Turbulent Boundary Layer up to R θ = 1410, J. Fluid Mech., 187, 61–98.

    Article  ADS  MATH  Google Scholar 

  113. Tafti, D. K. and Vanka, S. P. (1991) A numerical study of the effects of spanwise rotation on turbulent channel flow, Phys. Fluids A, 3(4), 642–656.

    Article  ADS  Google Scholar 

  114. Thompson, K.W., 1987, Time Dependent Boundary Conditions for Hyperbolic Systems, J. Comp. Phys., 68, pp. 506–517.

    Article  Google Scholar 

  115. Urbin, G., (1998) Etude numérique par simulation des grandes échelles de la transition à la turbulence dans les jets. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  116. Urbin, G. and Métais, O. (1997) Large-eddy simulation of three-dimensional spatially-developing round jets, in Direct and Large-Eddy Simulation II, J.P. Chollet, L. Kleiser and P.R. Voke eds., Kluwer Academic Publishers, pp. 35–46.

    Google Scholar 

  117. Urbin, G., Brun, C. and Métais, O. (1997) Large-eddy simulations of three-dimensional spatially evolving roud jets, 11th symposium on Turbulent Shear Flows, Grenoble, September 8–11, pp. 25-23/25-28.

    Google Scholar 

  118. Westphal, R. V., Johnston, J. P. and Eaton, J. K. (1984) Experimental study of flow reattachment in a single-sided sudden expansion, Stanford University, MD 41.

    Google Scholar 

  119. Widnall, S.E., Bliss, D.B. and Tsai, C. (1974) The instability of short waves on vortex ring. J.Fluid Mech, 66(1), pp. 35–47.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. Yoshizawa Y., Phys. fluids, 29, 1986, 2152.

    Article  ADS  MATH  Google Scholar 

  121. Zaman, K.B.M.Q., Reeder, M.F. and Samimy, M. (1994) Control of an axisymmetric jet using vortex generators. Phys.Fluids, 6(2), pp. 778–794.

    Article  ADS  Google Scholar 

  122. Zang, Y., Street, R.L., and Koseff J.R. (1993) A dynamic mixed subgrid scale model and its application to turbulent recirculating flows. Phys. Fluids A 5(12), 3186–3196.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Métais, O., Lesieur, M., Comte, P. (1999). Large-Eddy Simulations of Incompressible and Compressible Turbulence. In: Hanifi, A., Alfredsson, P.H., Johansson, A.V., Henningson, D.S. (eds) Transition, Turbulence and Combustion Modelling. ERCOFTAC Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4515-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4515-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5925-1

  • Online ISBN: 978-94-011-4515-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics