Skip to main content

Direct Numerical Simulation of Turbulent Compressible and Incompressible Wall-Bounded Shear Flows

  • Conference paper
Recent Advances in DNS and LES

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 54))

Abstract

Active research in turbulent compressible flow dates back to the fifties and was mainly driven by the aim to make flight at supersonic speeds possible. Considerable progress in measuring such flows and in predicting them numerically was achieved since then. Yet, a lot more has to be understood about the physics of compressible turbulence, especially what effects of compressibility due to turbulent fluctuations (intrinsic compressibility effects) is concerned. During the last decade direct numerical simulation (DNS) has made valuable contributions in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaisdell, G.A., Mansour, N.N., Reynolds, W.C.: ‘Numerical simulations of compressible homogeneous turbulence’. Report No. TF-50, Dept. of Mechanical Engineering, Stanford University, Stanford, California, 1991.

    Google Scholar 

  2. Blaisdell, G.A., Mansour, N.N., Reynolds, W.C.: ‘Compressibility effects on the growth and structure of homogeneous turbulent shear flow.’ J. Fluid Mech. 256, pp. 443–485, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Boersma, B. J.: ‘Electromagnetic effects in cylindrical pipe flow.’ Ph. D. Thesis, Delft University Press, 1997.

    Google Scholar 

  4. Boersma, B. J., Nieuwstadt, F. T. M.: ‘Large Eddy simulation of turbulent flow in a curved pipe’, In: Tenth symposium on turbulent shear flows. The Pennsylvania State University, 1, Poster Session 1, P1-19 — P1-24, 1995.

    Google Scholar 

  5. Boersma, B. J., Nieuwstadt, F. T. M.: ‘Non-Unique Solutions in Turbulent Curved Pipe Flow’, In: J.-P. Chollet et al. (eds.), Direct and Large-Eddv Simulation II, Kluwer Academic Publishers, pp. 257–266, 1997.

    Google Scholar 

  6. Coleman, G.: Private communication, 1998.

    Google Scholar 

  7. Coleman, G.N., Kim, J., Moser, R.D.: ‘A numerical study of turbulent supersonic-isothermal — wall channel flow.’ J. Fluid Mech. 305, pp. 159–183, 1995.

    Article  ADS  MATH  Google Scholar 

  8. Eggels, J.C.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, K.J., Friedrich, R., Nieuwstadt, F.T.M.: ‘Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment’, J. Fluid Mech. 268. 175–209, 1994.

    Article  ADS  Google Scholar 

  9. Germano, M.: ‘On the effect of torsion on a helical pipe flow’, J Fluid Mech., 125, pp. 1–8, 1982.

    Article  ADS  MATH  Google Scholar 

  10. Germano, M.: ‘The Dean equations extended to a helical pipe flow’. J. Fluid Mech., 203, pp. 289–305, 1989.

    Article  ADS  MATH  Google Scholar 

  11. Huang, P.G., Coleman, G.N., Bradshaw, P.: ‘Compressible turbulent channel flows — DNS results and modelling’. J. Fluid Mech. 305, pp. 185–218, 1995.

    Article  ADS  MATH  Google Scholar 

  12. Hüttl, T.J.: ‘Direkte Numerische Simulation turbulenter Strömungen in gekrümmten und tordierten Rohren’, Ph. D. Thesis, Technische Universität München, Fortschr.-Ber. VDI Reihe 7, VDI-Verlag, Düsseldorf, 1999.

    Google Scholar 

  13. Hüttl, T.J., Friedrich, R.: ‘Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes’, Proc. of the Third Asian Comp. Fluid Dynamics Conf. (ACFD3), Dec. 7–11’ 98, Bangalore India, vol. 2, pp. 183–188, 1998a.

    Google Scholar 

  14. Hüttl, T.J., Friedrich, R.: ‘Fully developed turbulent flow in conduits with circular cross section’ In: Proc. DGLR-STAB’98 Symp., Nov. 1998, Berlin, 1998b.

    Google Scholar 

  15. Hüttl, T.J., Friedrich, R.: ‘High Performance Computing of Turbulent Flow in Complex Pipe Geometries’,-In: High Performance Computing in Science and Engineering’ 98, Transactions of the High Performance Computing Center Stuttgart (HLRS) 1998, E. Krause, W. Jäger (Eds.), Springer Verlag, pp. 236–251, 1999a.

    Google Scholar 

  16. Hüttl, T.J., Friedrich, R.: ‘Influence of curvature and torsion on turbulent flows in helically coiled pipes’, Engineering Turbulence Modelling and Experiments 4, W. Rodi, D. Laurence (Eds.), Elsevier Science Ltd, pp. 247–256, 1999b.

    Google Scholar 

  17. Hüttl, T.J., Friedrich, R.: ‘Turbulent flow in coiled pipes’, Proc. Isaac Newton Symp. & Third ERCOFTAC Workshop on ‘Direct and Large-Eddy Simulation’, May 12–14, 1999, Univ. of Cambridge, Isaac Newton Institute For Math. Sciences, vol. 3, Paper 3.6, Cambridge (UK), 1999c.

    Google Scholar 

  18. Hüttl, T.J., Wagner, C., Friedrich, R.: ‘Navier Stokes Solutions of Laminar Flows Based on Orthogonal Helical Coordinates’, Numerical methods in laminar and turbulent flow, C. Taylor, J. Cross (eds.), Pineridge Press, Swansea UK, vol. 10, pp. 191–202, 1997.

    Google Scholar 

  19. Lai, Y.G., So, R.M.C., Zhang, H.S.: ‘Turbulence-Driven Secondary Flows in a Curved Pipe’, Theoret. Comput. Fluid Dynamics, 3:163–180, 1991.

    Article  ADS  MATH  Google Scholar 

  20. Poinsot, T.J., Lele, S.K.: ‘Boundary conditions for direct simulations of compressible viscous flows’, J. Comp. Phys. 101, 104–129, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Sarkar, S.: ‘The pressure-dilatation correlation in compressible flows.’ Phys. Fluids A4, pp. 2674–2682, 1992.

    ADS  Google Scholar 

  22. Sarkar, S.: ‘The stabilizing effect of compressibility in turbulent shear flow.’ J. Fluid Mech. 282, pp. 163–186, 1995.

    Article  ADS  MATH  Google Scholar 

  23. Sarkar, S., Erlebacher, G., Hussaini, M. Y.: ‘Direct simulation of compressible turbulence in a shear flow.’ Theor. Comput. Fluid Dyn. 2, pp. 291–305, 1991.

    Article  MATH  Google Scholar 

  24. Sesterhenn, J.: ‘A characteristic-type formulation of the Navier-Stokes equations for discretization with high order upwind schemes.’ Submitted to Computers & Fluids, 1999.

    Google Scholar 

  25. Speziale, C.G., Abid, R., Mansour, N.N.: ‘Evaluation of Reynolds stress turbulence closures in compressible homogeneous shear flow’. ZAMP, Special Issue, ed. by J. Casey & M.J. Crochet, S717–S736, 1995.

    Google Scholar 

  26. Williamson, J.H.: ‘Low-Storage Runge-Kutta schemes’, J. Comp. Phys. 35, 48–56, 1980.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Friedrich, R., Lechner, R., Sesterhenn, J., Hüttl, T.J. (1999). Direct Numerical Simulation of Turbulent Compressible and Incompressible Wall-Bounded Shear Flows. In: Knight, D., Sakell, L. (eds) Recent Advances in DNS and LES. Fluid Mechanics and its Applications, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4513-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4513-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5924-4

  • Online ISBN: 978-94-011-4513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics