Skip to main content

DNS and Modeling of Spray Turbulent Mixing

  • Conference paper
  • 455 Accesses

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 54))

Abstract

The injection of liquid fuel is a common procedure in turbulent combustion devices operating in the non-premixed regime. In these systems, dispersion, vaporization of the fuel droplets and turbulent combustion strongly interact. The understanding and modeling of these complex phenomena are important issues when optimizing combustion processes, to improve the economical and ecological output of the device.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chiu, H. H., Kim, H. Y., and Croke, E. J. (1982). Internal group combustion of liquid droplets. In combustion institute, T., editor, Proceedings of the nineteenth Symposium (International) on combustion.

    Google Scholar 

  • Crowe, C. T., Sharma, M. P., and Stock, D. E. (1977). The particle-source in cell (psi cell) model for gas droplet flows. Journal of Fluids Engineering, pages 325–332.

    Google Scholar 

  • Elgobashi, S. and Truesdell, G. (1989). Direct simulation of particle dispersion in a decaying isotropic turbulence. In Seventh symposium on turbulent shear flows, Stanford. Stanford University.

    Google Scholar 

  • Elgobashi, S. and Truesdell, G. (1992). Direct numerical simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech., 242:655–700.

    Article  ADS  Google Scholar 

  • Faeth, G. (1983). Evaporation and combustion of sprays. Prog. Energy Combust, Sci., 9:1–76.

    Article  ADS  Google Scholar 

  • Givi, P. (1989). Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci., 15:1–107.

    Article  ADS  Google Scholar 

  • Guichard, L., Lecordier, B., and Réveillon, J. (1998). Evaluation des algorithmes utilisés en piv grâce à la simulation numérique directe. In 6ieme Congrès francophone de Vélocimétrie Laser, F-5. Saint-Louis, France.

    Google Scholar 

  • Kuo, K., editor (1986). Principles of combustion. John Wiley and sons.

    Google Scholar 

  • Law, C. (1982). Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci., 8:171–201.

    Article  Google Scholar 

  • Lele, S. K. (1992). Compact finite difference schemes with spectral like resolution. J. Comput. Phys., (103):16–42.

    Google Scholar 

  • nán, A. L. and Williams, F. (1993). Fundamentals aspects of combustion, Oxford University Press.

    Google Scholar 

  • Poinsot, T., Candel, S., and Trouvé, A. (1996). Direct numerical simulation of premixed turbulent combustion. Prog. Energy Combust. Sci., 12:531–576.

    Google Scholar 

  • Réveillon. J., Bray, K., and Vervisch, L. (1998). Dns study of spray vaporization and turbulent micro-mixing. In AIAA 98-1028, 36th Aerospace Sciences Meeting and Exhibit, January 12–15, Reno NV.

    Google Scholar 

  • Réveillon. J. and Vervisch, L. (1999). Accounting for spray vaporization in non-premixed turbulent combustion modeling: A single droplet model (sdm). submitted.

    Google Scholar 

  • Sirignano, W. A. (1983). Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci., 8:291–322.

    Article  ADS  Google Scholar 

  • Squires, K. D. and Eaton, J. (1990). Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech., 226:1–35.

    Article  ADS  Google Scholar 

  • Vervisch. L. and Poinsot, T. (1998). Direct numerical simulation of non-premixed turbulent flame. Annu. Rev. Fluid Mech., (30):655–692.

    Google Scholar 

  • Wray, A.A. (1990). Minimal storage time-advancement schemes for spectral methods. Technical report, Center for turbulence research Report, Stanford University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hauguel, R., Réveillon, J., Vervisch, L. (1999). DNS and Modeling of Spray Turbulent Mixing. In: Knight, D., Sakell, L. (eds) Recent Advances in DNS and LES. Fluid Mechanics and its Applications, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4513-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4513-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5924-4

  • Online ISBN: 978-94-011-4513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics