Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 538))

  • 543 Accesses

Abstract

Functionality and aesthetics are two major driving forces for the advancement of science and technology and of course crystal engineering is no exception. In this article we discuss our rational designing strategies for controlling the functional properties of materials using both organic and inorganic molecular building blocks. The targeted functional properties include light-harvesting, ion exchange, porosity and intercalation. Our efforts to construct porous solids by exploiting directional forces in conjunction with molecular symmetry unraveled beautifully interwoven and threaded supramolecular structures that resemble carpets and Chinese blinds of the real world. Efforts have been made to discuss our results in light of the narrowing gap between ‘discrete’ and ‘infinitely large’ supermolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn, J.-M. (1995) Supramolecular Chemistry: Concepts and Perspectives; VCH, Weinheim, Germany.

    Book  Google Scholar 

  2. Whitesides, G.M., Mathias, J.P. and Seto, C.T. (1991) Molecular self-assembly and nanochemistry —a chemical strategy for the synthesis of nanostructure, Science, 254 1312–1319.

    Article  CAS  Google Scholar 

  3. Sauvage, J.-P. and Hosseini, M.W. (volume eds.) (1996) Templating, self-assembly and self-organization, in J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle and J.-M. Lehn (eds.), Comprehensive Supramolecular Chemistry, Vol. 9 Pergamon, Oxford.

    Google Scholar 

  4. Reinhoudt, D. N. (volume ed.) (1996) Supramolecular Technology, in J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle and J.-M. Lehn (eds.), Comprehensive Supramolecular Chemistry, Vol. 10 Pergamon, Oxford.

    Google Scholar 

  5. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.I., Calvert, P.D., Kendall, K., Messing, G.l., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A. and Caplan, A.I. (1992) Innovative materials processing strategies: a biomimetic approach, Science, 255 1098–1105.

    Article  CAS  Google Scholar 

  6. Balzani, V., Campagna, S., Demi, G., Juris, A., Serroni, S. and Venturi, M. (1998) Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns, Acc. Chem. Res. 31 26–34.

    Article  CAS  Google Scholar 

  7. Clearfield, A. (1998) Organically pillared micro-and mesoporous materials, Chem.Mater. 10, 2801–2810.

    Article  CAS  Google Scholar 

  8. Amabilino, D.B. and Stoddart, J.F. (1995) Interlocked and intertwined structures and superstructures, Chem. Rev. 95 2725–2828.

    Article  CAS  Google Scholar 

  9. Kaes, C., Hosseini, M.W., Rickard, C.E.F., Skelton, B.W. and White, A.H. (1998) Molecular tectonics, part 7 -synthesis and structural analysis of a helical coordination polymer formed by the self-assembly of a 2,2 ’- bipyridine-based exo-ditopic macrocyclic ligand and silver cations, Angew.Chem.fnt.Ed.Engl.,37 920–922.

    Article  CAS  Google Scholar 

  10. Pauling, L. (1960) The nature of chemical bond and the structures of molecules and crystals: An introduction to modern structural chemistry, 3rd Ed., Cornell University Press, Ithaca, New York.

    Google Scholar 

  11. Kitaigorodskii, A.I. (1973) Moleccular crystals and molecules, Academic Press, New York.

    Google Scholar 

  12. Desiraju, G.R. (1989) Crystal engineering: the design of organic solids, Elsevier, Amsterdam.

    Google Scholar 

  13. Dunitz, J.D. (1996) Thoughts on crystals as supermolecules, in G. R. Desiraju, (ed.) The Crystal as a Supramolecular Entity, pp. 1–30.

    Google Scholar 

  14. Desiraju, G. R. and Sharma, C.V.K. (1996) Crystal engineering and molecular recognition-twin facets of supramolecular chemistry, in G. R. Desiraju, (ed.) The Crystal as a Supramolecular Entity, pp. 31–61.

    Google Scholar 

  15. Desiraju, G. R. (1995) Supramolecular synthons in crystal engineering - a new organic synthesis, Angew. Chem./nt.Ed.Engl. 34 2311–2327.

    Article  CAS  Google Scholar 

  16. Stang, P.J. and Olenyuk, B. (1997) Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra, Acc.Chem.Res. 30502–518.

    Article  CAS  Google Scholar 

  17. Braga, D., Grepioni, F. and Desiraju, G.R. (1998), Crystal engineering and organometallic architectureChem. Rev. 4 1375–1405.

    Article  Google Scholar 

  18. Yaghi, O.M., Li, G. and Li, H. (1995) Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378 703–706.

    Article  CAS  Google Scholar 

  19. Russell, V.A., Evans, C.C., Li, W. and Ward, M.D. (1997) Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity, Science, 276 575–579.

    Article  CAS  Google Scholar 

  20. MacGillivray L.R. and Atwood J.L. (1997) Rational design of multicomponent calix[4]arenes and control of their alignment in the solid state, J.Am.Chem.Soc., 119 6931–6932.

    Article  CAS  Google Scholar 

  21. Aakeroy, C.B. (1997) Crystal engineering: strategies and architectures, Acta Crystallogr. B53 569–586.

    CAS  Google Scholar 

  22. Robson, R. (1996) Infinite Networks, in J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vögtle and J.-M. Lehn (eds.), Comprehensive Supramolecular Chemistry, Vol. 6 Pergamon, Oxford, pp. 733–755.

    Google Scholar 

  23. Sharma, C.V.K. and Desiraju, G.R. (1994) C-H•••O Hydrogen bond patterns in crystalline nitro compounds: studies in solid state molecular recognition. J.Chem.Soc., Perkin Trans. 2, 2345.

    Google Scholar 

  24. Desiraju, G.R. (1996) The C-H•••O hydrogen bond: structural implications and supramolecular design, Acc.Chem.Res. 29 441–449.

    Article  CAS  Google Scholar 

  25. Sharma, C.V.K. and Rogers, R.D. (1998) Perspectives of Crystal Engineering, Materials Today, 1, issue, 3, 27–30.

    Article  Google Scholar 

  26. Desiraju, G.R. (1997) Crystal gazing: structure prediction and polymorphism, Science, 278 404–405.

    Article  CAS  Google Scholar 

  27. Wasielewski, M. R. (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis, Chem.Rev. 92 435–461.

    Article  CAS  Google Scholar 

  28. Drain, C. M., Nifiatis, F., Vasenko, A. and Batteas, J. D. (1998) Porphyrin tessellation by design: metal-mediated self-assembly of large arrays and tapes, Angew.Chem.Int.Ed.Engl. 37 2344–2347.

    Article  CAS  Google Scholar 

  29. Li, F.R., Yang, S.I., Ciringh, Y.Z., Seth, J., Martin III, C. H., Singh, D. L., Kim, D.H., Birge, R. R., Bocian, D. F., Holten, D. and Lindsey, J. S. (1998) Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments, J.Am.Chem.Soc. 120 10001–10017.

    Article  CAS  Google Scholar 

  30. Hunter, C. A. and Hyde, R. K. (1996) Photoinduced energy and electron transfer in supramolecular porphyrin assemblies, Angew.Chem.Int.Ed.Engl’. 35, 1936–1939.

    Article  CAS  Google Scholar 

  31. Buehler, J. W. (1978) Synthesis and properties of metalloporphyrins in D. Dolphin (ed.), The Porphyrins, Vol. 1, Academic Press, New York, pp. 389–483.

    Chapter  Google Scholar 

  32. Abrahams, B. F., Hoskins, B. F., Michail, D. M. and Robson, R. (1994) Assembly of porphyrin building-blocks into network structures with large channels, Nature, 369 727–729.

    Article  CAS  Google Scholar 

  33. Kumar, R. K., Balasubramanian, S., Goldberg, I. (1998) Supramolecular multiporphyrin architecture. coordination polymers and open networks in crystals of tetrakis(4-cyanophenyl) and tetrakis(4-nitrophenyl)metalloporphyrin, Inorg.Chem. 37 541–552.

    Article  CAS  Google Scholar 

  34. Bhyrappa, P., Wilson, S. R. and Suslick, K. S. (1997) Hydrogen-bonded porphyrinic solids: supramolecular networks of octahydroxy porphyrins, J.Am.Chem.Soc. 119 8492–8502.

    Article  CAS  Google Scholar 

  35. Sharma C.V.K., Broker, G.A., Huddlestone, J.G., Baldwin, J.W., Metzger, R.M. and Rogers, R.D. (1999) Design strategies for solid state supramolecular arrays containing both mixed-metallated and freebase porphyrins“, J.Am.Chem.Soc. 121, 1137–1144.

    Article  CAS  Google Scholar 

  36. Kusukawa T. and Fujita M (1998) Encapsulation of large, neutral molecules in a self-assembled nanocage incorporating six palladium(II) ions, Angew.Chem.Int.Ed.Engl. 37 3142–3144.

    Article  CAS  Google Scholar 

  37. Masciocchi, N., Ardizzoia, G.A., LaMonica, G., Maspero, A. and Sironi, A. (1998) Unique formation of a crystal phase containing cyclic oligomers and helical polymers of the same monomeric fragment, Angew.Chem.Int.Ed.Engl. 37 3366–.3368.

    Article  CAS  Google Scholar 

  38. Hunter, C.A. (1995) Self-assembly of molecular-sized boxes, Angew.Chem.Int.Ed.Engl. 34 1079–1081

    Article  CAS  Google Scholar 

  39. Balzani, V., Gomez-Lopez, M. and Stoddart, J. F. (1998) Molecular machines, Acc.Chem.Res. 31 405–414.

    Article  CAS  Google Scholar 

  40. Zaworotko, M. J. (1998) Coordination polymers in K. R. Seddon, and M. J. Zaworotko (eds.) Crystal Engineering: The Design and Application of Functional Solids, NATO, ASI series, Kluwer, Dordecht, Netherlands.

    Google Scholar 

  41. Sharma C.V.K., Griffin, S.T. and Rogers, R.D. (1998) Simple routes to supramolecuaar squares with ligand corners: 1:1 Ag(I):pyrimidine cationic tetranuclear assemblies. Chem.Commun. 215–216.

    Google Scholar 

  42. Mallouk, T. E. and Gavin, J.A. (1998) Molecular recognition in lamellar solids and thin films, Acc.Chem.Res. 31 209–217.

    Article  CAS  Google Scholar 

  43. Crooks, R.M. and Ricco, A.J. (1998) New organic materials suitable for use in chemical sensor arrays, Acc.Chem.Res. 31 219–227.

    Article  CAS  Google Scholar 

  44. Menger, F.M., Lee J. and Hagen, K.S. (1991) Molecular laminates. Three distinct crystal packing modes, J.Am.Chem.Soc. 113 4017–4019.

    Article  CAS  Google Scholar 

  45. Clearfield, A. (1998) Metal phosphonate chemistry, in K.D. Karlin (ed.) Progress in Inorganic Chemistry; John Wiley & Sons, New York, Vol. 47 pp. 371–510.

    Chapter  Google Scholar 

  46. Herbstein, F. H. (1996) 1,3,5-Benzenetricarboxylic acid (trimesic acid) and some analogues, in J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Vogtle and J.-M. Lehn (eds.), Comprehensive Supramolecular Chemistry, Pergamon, Oxford, Vol. 6 pp. 61–83.

    Google Scholar 

  47. Kolotuchin, S.V., Fenton, E. E., Wilson, S. R., Loweth, C. J. and Zimmerman, S.C. (1995) Self-assembly of 1,3,5-benzenetricarboxylic acids (trimesic acids) and several analogues in the solid state,Angew.Chem.Int.Ed.Engl. 34 2654–2657.

    Article  CAS  Google Scholar 

  48. Melendez, R. E., Sharma, C.V.K., Zaworotko, M. J., Bauer, C. and Rogers, R.D. (1996) Toward the design of porous solids: modular honeycomb grids sustained by anions of trimesic acid, Angew.Chem.Int.Ed.Engl. 35 2213.

    Article  CAS  Google Scholar 

  49. Sharma, C.V.K., Bauer, C., Rogers, R.D. and Zaworotko, M.J. (1997) Interdigitated supramolecular laminates, Chem.Commun. 1559–1560.

    Google Scholar 

  50. Biradha, K., Dennis, D., MacKinnon, V.A., Sharma, C.V.K. and Zaworotko, M. J. (1998) Supramolecular synthesis of laminates with affinity for aromatic guests: a new class of clay mimics, J.Am.Chem.Soc. 120 1894–11903.

    Google Scholar 

  51. Radloff, R., Bauer, W. and Vinograd, J. (1967) A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in Hela Cells, Proc.Natl.Acad.Sci. USA, 57. 1514–1521.

    Article  CAS  Google Scholar 

  52. Hudson, B. and Vinograd, J. (1967) Catenated circular DNA molecules in Hela Cell Mitchondira, Nature, 216 647–652.

    Article  CAS  Google Scholar 

  53. Seeman, N.C. (1998) Nucleic acid nanostructures and topology, Angew.Chem.Int. Ed. Engl. 37 3220–3238.

    Article  CAS  Google Scholar 

  54. Sauvage, J.-P. (1998) Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors, Acc.Chem.Res. 31 611–619.

    Article  CAS  Google Scholar 

  55. Batten, S.R. and Robson, R. (1998) Interpenetrating nets: ordered, periodic entanglement, Angew.Chem.Int.Ed.Engl. 37 1460–1494.

    Article  Google Scholar 

  56. Ermer, O. (1988) Fivefold-diamond structure of adamantane-1,3,5,7-tetracarboxylic acid, J.Am.Chem.Soc. 110 3747–3754.

    Article  CAS  Google Scholar 

  57. Sharma, C.V.K. and Zaworotko, M.J. (1996) X-ray crystal structure of C6H3(CO2H)-1,3,5• (4,4’Bipyridine): ‘a super trimesic acid’ chicken-wire grid“. Chem.Commun. 2655–2656.

    Google Scholar 

  58. Sharma, C.V.K. and Zaworotko, M.J. Unpublished results.

    Google Scholar 

  59. Brunet, P., Simard, M. and Wuest, J.D. (1997) Molecular tectonics. porous hydrogen-bonded networks with unprecedented structural integrity, J.Am.Chem.Soc. 119 2737–2738.

    Article  CAS  Google Scholar 

  60. Davies, C., Langler, R. F., Sharma, C.V.K. and Zaworotko, M. J. (1997) A supramolecular carpet formed via self-assembly of bis(4,4’-dihydroxyphenyl)sulfone, Chem.Commun., 567–568.

    Google Scholar 

  61. Al-Rasoul, K. and Weakley, T.J.R. (1982), The crystal structure of 4,4’-bipyridinium(+1) tetranitratodiaqua (4,4’-bipyridyl)-neodymiate(III) and trinitratotetraaquaytterbium(1II)-4,4’-bipyridinium(+1)nitrate(1/2), Inorg.Chim.Acta. 60 191–196.

    Article  CAS  Google Scholar 

  62. Sharma, C.V.K. and Rogers, R.D. (1999) Molecular Chinese blinds: spontaneous self-organization of tetranitrato lanthanides into open chiral hydrogen bonding networks, Chem. Commun. 83–84.

    Google Scholar 

  63. Schmidt, G.M.J. (1971) Photodimerization in the solid state, Pure Appl. Chem. 27 647–678.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, C.V.K. (1999). Crystal Engineering: Functionality and Aesthetics. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics