Skip to main content

Steady Convection in Deep Compressible Layers

  • Conference paper
  • 115 Accesses

Abstract

The standard mixing-length model of convection traditionally used in astrophysics is based on an anology with the kinetic theory of gases; convective eddies travelling a distance ℓ before mixing with the background. The mixing length ℓ is assummed to be of the order of the local scale height of density or pressure, on the grounds that if, at any one level, upward moving material occupies half the area, then on travelling a scale height it would have expanded to fill all the available area (cf Biermann (1935). Simulations of steady convection do not find eddies to be of the order of the local scale height, but rather a single cell extending over several scale heights from top to bottom of the layer (cf Graham 1975, Chan and Wolf 1982, Hulburt et al 1994, Roxburgh and Simmons 1993). Simulations of turbulent convection with some form of sub-grid scale closure give plumes or downdrafts extending over several scale heights (cf Nordlund and Stein 1996, Singh, Roxburgh and Chan 1995). We here present a simple explanation of these results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beirmann L., 1935, Astron. Nach., 257, 270

    ADS  Google Scholar 

  • Chan K.L., Wolf C.L., 1996, J. Comp. Phys., 47, 109

    Google Scholar 

  • Graha E. 1975 J. Fluid. Mech. 70 68

    Google Scholar 

  • Hulbert N. E. Toomre J. Massagauer J. Zahn J.P. 1996 Astrophys. J. 421 24

    Google Scholar 

  • NordlundÅ., Stein R F, 1996, Stellar Evolution: WhatShouldbe Done? eds Noels A, Fraipont-Car D, Gabriel M, Grevesse, N, Demarque P. pp 75–

    Google Scholar 

  • Roxburgh I.W., 1989, Astron. Astrophys., 211, 361

    ADS  MATH  Google Scholar 

  • Roxburgh I.W., Simmons J., 1996, Astron. Astrophys., 277, 93

    ADS  Google Scholar 

  • Singh H.P., Roxburgh I.W., Chan K. L., 1997, Astron. Astrophys., 295, 703

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Roxburgh, I.W. (1999). Steady Convection in Deep Compressible Layers. In: Lago, M.T.V.T., Blanchard, A. (eds) The Non-Sleeping Universe. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4497-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4497-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5923-7

  • Online ISBN: 978-94-011-4497-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics