Relative Timing on Magnetospheric Substorm Onset Signatures

  • C.-I. Meng
  • K. Liou
Part of the NATO Science Series book series (ASIC, volume 537)


A unified time reference frame, T = 0, is critical in determining the correct morphology of magnetospheric dynamics associated with substorm observations, and the relative timing of onset between different substorm signatures at various locations in space is essential to the understanding of the physical mechanisms of substorm onset. In this paper we will emphasize the importance of this issue by demonstrating inconsistency among several widely used onset signatures as a substorm onset indicator. Proxies for substorm onsets used for this study include auroral breakups, sharp decreases in negative bays at high latitudes, low-latitude Pi 2 pulsations, dispersionless injections at geostationary orbits, and auroral kilometric radiation. We use the auroral breakup as the common reference frame to calibrate other substorm onset indicators. The auroral breakup is identified with ultraviolet images acquired by the ultraviolet imager aboard the Polar spacecraft. Our results, based on a typical substorm event, indicate that a sharp decrease in negative bays is associated with the overhead crossing of the auroral surge. In addition, the onset-associated Pi 2 pulsations lag behind auroral breakups by 1 min. The dispersionless plasma injection seen at the geostationary orbit, within 2 MLT from the auroral breakups, is also found to be delayed by 3 min. The auroral kilometric radiation can time the onset of an isolated auroral substorm best among others when the observational location is favorable. On the basis of the results of this study, we recommend that the auroral breakup can be best suited for the T = 0 reference time frame for magnetospheric substorm.


Interplanetary Magnetic Field Geostationary Orbit Substorm Onset Ultraviolet Imager Magnetospheric Substorm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akasofu, S.-I (1964) The development of the auroral substorm, Planet. Space Set., 12, 273.ADSCrossRefGoogle Scholar
  2. 2.
    Akasofu, S.-I, and Meng, C.-I. (1969) A study of polar magnetic substorms, J. Geophys. Res., 74, 293.ADSCrossRefGoogle Scholar
  3. 3.
    Meng, C.-I., and Akasofu, S.-I. (1969) A study of polar magnetic substorms: 2. Three-dimensional current system, J. Geophys. Res., 74, 4035.ADSCrossRefGoogle Scholar
  4. 4.
    Rostoker, G. (1968) Macrostructure of geomagnetic bays, J. Geophys. Res., 73, 4217.ADSCrossRefGoogle Scholar
  5. 5.
    Saito, T., Yumoto, K., and Koyama Y. (1976) Magnetic pulsation Pi 2 as a sensitive indicator of magnetospheric substorm, Planet. Space Sci., 24, 1025.ADSCrossRefGoogle Scholar
  6. 6.
    Belian, R. D., Baker, D. N., Hones, E. W., Jr., Higbie, P. R., Bame, S., J., and Asbridge, J. R., (1981) Timing of energetic proton enhancements relative to magnetospheric substorm activity and its implication for substorm theories, J. Geophys. Res., 86, 1415–1421.ADSCrossRefGoogle Scholar
  7. 7.
    Reeves, G. D., Belian, R. D., Cayton, T. C., Christensen, R. A., Henderson, and M. G., McLachlan, P. S. (1996) Los Alamos space weather data products: On line and on time, in Proc. Third International Conference on Sub.storms (ICS-3), p. 689, ESA SP-389, Noordwijk, Holland.Google Scholar
  8. 8.
    Slavin, J. A., Smith, M. F., Mazur, E. L., Baker, D. N., Hones, E. W., Jr., Iyemori, T., and Greenstadt, E. W. (1993) ISEE 3 observations of Traveling Compression regions in the Earth’s magnetotail, J. Geophys. Res., 98, 15,425.Google Scholar
  9. 9.
    Murata, T., Matsumoto, H., Kojima, H., Fujita, A., Nagai, T., Yatnanoto, T., and Anderson, R. R. (1995) Estimation of tail reconnection lines by AKR onsets and plasmoid entries observed with GEOTAIL spacecraft, Geophys. Res. Lett., 22, 1169–1172.CrossRefGoogle Scholar
  10. 10.
    Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., and Gosling, J. T. (1994) Statistical characteristics of bursty bulk flow events, J. Geophys. Res., 99, 21257.ADSCrossRefGoogle Scholar
  11. 11.
    Lui, A. T. Y., Liou, K., Newell, P. T., Meng, C.-I., Ohtani, S.-I., Mukai, T., Yamamoto, T., Ogino, T., Kokubun, S., Brittnacher, M. J., and Parks, G. K. (1998) Plasma and magnetic flux transport associated with auroral breakups, Geophys. Res. Lett. 25, 4059.ADSCrossRefGoogle Scholar
  12. 12.
    Rostoker, G., Akasofu, S.-I., Foster, J., Greenwald, R. A., Kamide, Y., Kawasaki, K., Lui, A. T. Y., McPherron, R. L., and Russell, C. T. (1980) Magnetospheric substonns—definition and signatures, J. Geophys. Res., 85, 1663.ADSCrossRefGoogle Scholar
  13. 13.
    Arnoldy, R. L., and Moore, T. E. (1983) The longitudinal structure of substonn injections at synchronous orbit, J. Geophys. Res., 88, 6213.ADSCrossRefGoogle Scholar
  14. 14.
    Reeves, G. D., Kettmann, G., Fritz, T. A., and Belian, R. D. (1992) Further investigation of the CDW 7 substonn using geosynchronous particle data: Multiple injections and their implications, J. Geophys. Res., 97, 6417.ADSCrossRefGoogle Scholar
  15. 15.
    Gurnett, D. A., and Frank, L. A. (1973) Observed relationships between electric fields and auroral particle precipitation, J. Geophys. Res., 78, 145.ADSCrossRefGoogle Scholar
  16. 16.
    Green, J. L., Gurnett, D. A., and Hoffinan, R. A. (1979) A correlation between auroral kilometric radiation and inverted V electron precipitation, J. Geophys. Res., 84, 5216.Google Scholar
  17. 17.
    Torr, M. R., et al. (1995) A far ultraviolet imager for the international solar-terrestrial physics mission, Space Sci. Rev., 71, 329.ADSCrossRefGoogle Scholar
  18. 18.
    Yumoto, K., and the 210° MM Magnetic Observation Group (1996) The STEP 210° magnetic meridian network project, J. Geomag. Geoelectr., 48, 1297–1309.CrossRefGoogle Scholar
  19. 19.
    Gurnett, D. A., et al. (1995) The Polar plasma wave instrument, Space Sci. Rev., 71, 597.ADSCrossRefGoogle Scholar
  20. 20.
    Baker, K. B., and Wing, S. (1989) A new magnetic coordinate system far conjugate studies at high latitudes, J. Geophys. Res., 94, 9139.ADSCrossRefGoogle Scholar
  21. 21.
    Meng, C.-I. (May 1965) Polar magnetic and auroral substorms, M. S. thesis, University of Alaska.Google Scholar
  22. 22.
    Akasofu, S.-I., and Meng, C.-I. (1967) Intense negative bays inside the auroral zone I. The evening sector, J. Atmos. Terr. Phys., 29, 965.ADSCrossRefGoogle Scholar
  23. 23.
    Liou, K., Meng, C.-I., Lui, A. T. Y., Newell, P. T., Brittnacher, M., Parks, G., and Nosé, M. (1998) A fresh look at substorm onset identifiers, in Substorms-4, edited by S. Kokubun and Y. Kamide, Dordrecht, The Netherlands, Kluwer Academic Publishers, p. 249.Google Scholar
  24. 24.
    Tsyganenko, N. A. (1989) A solution of the Chapman-Ferraro problem for an ellipsoidal magnetopause, Planet. and Space Sci., 37, 1037–1046.ADSCrossRefGoogle Scholar
  25. 25.
    Reeves, G. D., Belian, R. D., and Fritz, T. A. (1991) Numerical tracing of energetic particle drifts in a model magnetosphere, J. Geophys. Res., 96, 13,997.Google Scholar
  26. 26.
    Birn, J., Thompson, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., and Belian, R. D. (1997) Characteristic plasma properties during dispersionless substorm injection at geosynchronous orbit, J. Geophys. Res., 102, 2309–2324.ADSCrossRefGoogle Scholar
  27. 27.
    Voots, G. R., Garnett, D. A., and Akasofu, S.-I. (1977) Auroral kilometric radiation as an indicator of auroral magnetic disturbances, J. Geophys. Res., 82, 2259.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • C.-I. Meng
    • 1
  • K. Liou
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations