Advertisement

Bow Shock Position: Observations and Models

  • J. Šafránková
  • Z. Němeček
  • M. Borák
Part of the NATO Science Series book series (ASIC, volume 537)

Abstract

The set of MAGION-4 and GEOTAIL bow shock crossings, which covers a broad range of latitudes and local times, was completed with solar wind and interplanetary magnetic field observations to determine upstream conditions. The solar wind dynamic pressure varied from 1 to 12 nPa and the Alfvénic Mach number from 4 to 50 and thus these observations provide an excellent opportunity to test empirical models describing the bow shock position as a function of upstream parameters. We have calculated the bow shock positions predicted by various models and determined the distance between observed and predicted locations. We have tested influence of the solar wind and interplanetary magnetic field fluctuations, solar wind aberration, Mach number, and magnetic field strength on the precision of the investigated models. The results show that the uncertainty of the prediction of the bow shock position cannot be explained by errors in the determination of upstream parameters, and that either additional parameters or new interactions should be incorporated into a new model.

Keywords

Solar Wind Mach Number Interplanetary Magnetic Field Solar Wind Dynamic Pressure Solar Wind Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fairfield, D. H. (1971) Average and unusual locations of the Earth’s magnetopause and bow shock, J. Geophys. Res., 76, 6700.ADSCrossRefGoogle Scholar
  2. [2]
    Formisano, V., P. C. Hedgecock, G. Moreno, J. Sear, and D. Bol-lea (1971) Observations of Earth’s bow shock for low Mach numbers, Planet. Space Sci., 19, 1519.ADSCrossRefGoogle Scholar
  3. [3]
    Slavin, J. A. and R. E. Holzer (1981) Solar wind flow about the terrestrial planets, 1, Modeling bow shock position and shape, J. Geophys. Res., 86, 401.CrossRefGoogle Scholar
  4. [4]
    Formisano, V. (1979) Orientation and shape of the Earth’s bow shock in three dimensions, Planet. Space Sci., 27, 1151.ADSCrossRefGoogle Scholar
  5. [5]
    Zhuang, H. C. and C. T. Russell (1981) An analytic treatment of the structure the bow shock and magnetosheath, J. Geophys. Res., 86, 2191.ADSCrossRefGoogle Scholar
  6. [6]
    Němeček, Z. and J. Šafránková (1991) The Earth’s bow shock and magnetopause position as a result of solar wind - magnetosphere interaction, Journal of Atmospheric and Terrestrial Physics, 53, 1049.CrossRefGoogle Scholar
  7. [7]
    Fairfield, D. H. and W. C. Feldman (1975) Standing waves at low Mach number laminar bow shocks, J. Geophys. Res., 80, 515.ADSCrossRefGoogle Scholar
  8. [8]
    Cairns, I. H., D. H. Fairfield, R. R. Anderson, E. H. Carlton, K. I. Paularena, and A. J. Lazarus (1995) Unusual locations of Earth’s bow shock on September 24–25, 1987: Mach number effects, J. Geophys. Res., 100, 47.ADSCrossRefGoogle Scholar
  9. [9]
    Farris, M. H., S. Petrinec, and C. T. Russell (1991) The thickness of the magnetosheath: Constraints on the polytropic index, Geophys. Res. Lett., 18, 1821.ADSCrossRefGoogle Scholar
  10. [10]
    Peredo, M., J. A. Slavin, E. Mazur, and S. A. Curtis (1995) Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation, J. Geophys. Res., 100, 7907.ADSCrossRefGoogle Scholar
  11. [11]
    Bieber, J. W. and E. C. Stone (1979) Proc. of Magnetospheric Boundary Layers Conf.,Alpbach, Eur. Space Agency, Spec. Publ. ESA SP-148.Google Scholar
  12. [12]
    Mazur, E., M. Peredo, J. A. Slavin, and S. A. Curtis (1992) The 3-D position and shape of the bow shock and their variation with MS, MA, and IMF orientation, EOS Trans. AGU, 73, 445.Google Scholar
  13. [13]
    Peredo, M., E. Mazur, J. A. Slavin, and S. A. Curtis (1993) The bow shock: A three-dimensional model for arbitrary solar wind dynamic pressure, IMF orientation, and Alfvénic Mach number, EOS Trans. AGU, 74, 246.Google Scholar
  14. [14]
    Spreiter, J. R. and A. W. Rizzi (1974) Aligned magnetohydrodynamic solution for solar wind flow past the earth’s magnetosphere, Acta Astronaut., 1, 15.ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    Walters, G. K. (1964) Effect of oblique interplanetary magnetic field on shape and behavior of the magnetosphere, J. Geophys. Res., 69, 1769.ADSCrossRefGoogle Scholar
  16. [16]
    Romanov, S. A., V. N. Smirnov, and O. L. Vaisberg (1978) Interaction of the solar wind with Venus, Cosmic Res., 16, 603.Google Scholar
  17. [17]
    Farris M. H. and C. T. Russell (1994) Determining the standoff distance of the bow shock: Mach number dependence and use of models, J. Geophys. Res., 99, 17681.ADSCrossRefGoogle Scholar
  18. [18]
    Shue, J.-A., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997) A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res.,102, 9497.ADSCrossRefGoogle Scholar
  19. [19]
    Šafránková, J., Z. Némeček, M. Borák (1999) MAGION-4 observations of the bow shock crossings, Czech. J. Phys., in print.Google Scholar
  20. [20]
    Spreiter, J. R., A. L. Summers, and A. Y. Alksne (1966) Hydromagnetic Flow Around the Magnetosphere, Planet. Space Sci., 14, 223.ADSCrossRefGoogle Scholar
  21. [21]
    Sibeck, D., R. Lopez, and E. Roelof (1991) Solar wind control of the magnetopause shape, location and motion, J. Geophys. Res., 96, 489.Google Scholar
  22. [22]
    Némeček, Z., J. Šafránková, L. Přech, G. N. Zastenker, P. Eiges, M. N. Nozdrachev, K. I. Paularena, S. Kokubun and T. Mukai (1998) Magnetosheath study: INTERBALL observations, Adv. Space Res., submitted.Google Scholar
  23. [23]
    Némeček, Z., J. Šafránková, and G. N. Zastenker, Dynamics of the Earth’s bow shock position (1988) Adv. Space Res., 8, (9)167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. Šafránková
    • 1
  • Z. Němeček
    • 1
  • M. Borák
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic

Personalised recommendations