Advertisement

The Influence of Convection on Magnetotail Variability

  • Vahe Peroomian
  • Maha Ashour-Abdalla
  • Lev M. Zelenyi
  • Anatoli Petrukovich
Part of the NATO Science Series book series (ASIC, volume 537)

Abstract

This study investigates the evolution of the magnetotail’s magnetic field with the aid of a self-consistent two-dimensional model. In this model the plasma mantle continuously supplies particles to the magnetotail, the ion current periodically updates the magnetic field using the Biot-Savart law. The simulated magnetotail evolves into a quasi-steady state, characterized by the periodic motion of the model’s near-Earth X-line. This variability results from the nonadiabatic acceleration of ions in the current sheet and their rapid loss from the tail. The characteristic time scale of variability in the magnetotail is on the order of 4–5 minutes. We also investigate how the magnetotail’s topology responds to increased convection electric fields, and show examples of observations of variability in the magnetotail.

Keywords

Solar Wind Current Sheet Interplanetary Magnetic Field Plasma Sheet Autocorrelation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birn, J., and M. Hesse (1991) The substorm current wedge and field-aligned currents in MHD simulations of magnetotail reconnection, J. Geophys. Res., 96, 1611–1618.ADSCrossRefGoogle Scholar
  2. 2.
    Ogino, T., R. J. Walker, and M. Ashour-Abdalla (1994) A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field, J. Geophys. Res., 99, 11,027–11,042.ADSCrossRefGoogle Scholar
  3. 3.
    Raeder, J., R. J. Walker, and M Ashour-Abdalla (1995) The structure of the distant geomagnetic tail during long periods of northward IMF, Geophys. Res. Lett.,22, 349–352.ADSCrossRefGoogle Scholar
  4. 4.
    Fedder, J. A., and J. G. Lyon (1995) The Earth’s magnetosphere is 165 R E long: Self consistent currents, convection, magnetospheric structure and processes for northward interplanetary magnetic field, J. Geophys. Res., 100, 3623–3635.ADSCrossRefGoogle Scholar
  5. 5.
    Hesse, M., D. Winske, M. Kuznetsova, and J. Bim (1996) Hybrid simulations of the formation of thin current sheets in magnetotail configurations, J Geomagn. Geoelec., 48, 749–758.CrossRefGoogle Scholar
  6. 6.
    Pritchett, P. L., and F. V. Coroniti (1996) The role of the drift kink mode in destabilizing thin current sheets, J. Geomagn. Geoelectr., 48, 833–844.CrossRefGoogle Scholar
  7. 7.
    Büchner, J. (1996) Three-dimensional current sheet tearing in the earth’s magnetotail, Adv. Space Res., 18, 267–280.ADSCrossRefGoogle Scholar
  8. 8.
    Larson, D. J., and R. L. Kaufmann (1996) Structure of the magnetotail current sheet, J. Geophys. Res., 101, 21,447–21,461.ADSCrossRefGoogle Scholar
  9. 9.
    Kaufmann, R. L., D. J. Larson, I. D. Kontodinas, and B. M. Ball (1997a) Force balance and substorm effects in the magnetotail, J. Geophys. Res., 102, 22,141–22,154.ADSCrossRefGoogle Scholar
  10. 10.
    Kaufmann, R. L., I. D. Kontodinas, B. M. Ball, and D. J. Larson (1997b) Nonguiding center motion and substorm effects in the magnetotail, J. Geophys. Res., 102, 22,155–22,168.ADSCrossRefGoogle Scholar
  11. 11.
    Peroomian, V., M. Ashour-Abdalla, and L. M. Zelenyi (1998) Self-consistent simulation of the magnetotail, Substorms-9, edited by S. Kokubun and Y. Kamide, Kluwer Acad. Pub., 165–168.Google Scholar
  12. 12.
    Ashour-Abdalla, M., J. Berchem, J. Büchner, and L. M. Zelenyi (1993) Shaping of the magnetotail from the mantle: Global and local structuring, J. Geophys. Res., 98, 5651–5676.ADSCrossRefGoogle Scholar
  13. 13.
    Ashour-Abdalla, M., L. M. Zelenyi, V. Peroomian, and R. L. Richard (1994) Consequences of magnetotail ion dynamics, J. Geophys. Res., 99, 14,891–14,916.ADSCrossRefGoogle Scholar
  14. 14.
    Ashour-Abdalla, M., L. M. Zelenyi, V. Peroomian, R. L. Richard, and J.M. Bosqued., The mosaic structure of plasma bulk flows in the Earth’s magnetotail, J. Geophys. Res., 100, 19,191–19,209.Google Scholar
  15. 15.
    Birn, J., R. Sommer, and K. Schindler (1975) Open and closed magnetospheric tail configurations and their stability, Astrophys. Space Sci.,35, 389–400.ADSCrossRefGoogle Scholar
  16. 16.
    Zwingmann, W. (1983) Self-consistent magnetotail theory: Equilibrium structures including arbitrary variation along the tail axis, J. Geophys. Res., 88, 9101–9108.ADSCrossRefGoogle Scholar
  17. 17.
    Borovsky, J. E., R. C. Elphic, H. O. Funsten, and M. F. Thomsen (1997) The Earth’s plasma sheet as a laboratory for flow turbulence in high-B MID, J. Plasma Phys., 57, 1–34.ADSCrossRefGoogle Scholar
  18. 18.
    Sergeev, V. A., and W. Lennartsson (1988) Plasma sheet at X — 20 RE during steady magnetospheric convection, Planet. Space Sci., 36, 353–366.ADSCrossRefGoogle Scholar
  19. 19.
    Baumjohann, W., G. G. Paschmann, and H. Luhr (1990) Characteristics of highspeed ion flows in the plasma sheet, J Geophys. Res., 95, 3801–3809.ADSCrossRefGoogle Scholar
  20. 20.
    Angelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russel, W. Baumjohann, W. C. Feldman, and J. T. Gosling (1994) Statistical characteristics of bursty bulk flows events, J Geophys. Res., 99, 21,257–21280.Google Scholar
  21. 21.
    Sergeev, V. A., T. I. Pulkkinen, and R. J. Pellinen (1996) Coupled-mode scenario for the magnetospheric dynamics, J. Geophys. Res., 101, 13,047–13,065.ADSCrossRefGoogle Scholar
  22. 22.
    Stenuit, H., J.-A. Sauvaud, R. Kovrazhkin, L. A. Frank, W. R. Paterson, Impulsive ion injections at the polar edge of the auroral oval from the magnetospheric flanks: Interball-2 observations, EOS,Transactions, American Geophysical Union, F764.Google Scholar
  23. 23.
    Zesta, E., L. R. Lyons, J. C. Samson (1998) Occurrence of auroral poleward boundary intensifications, EOS, Transactions,American Geophysical Union, F761.Google Scholar
  24. 24.
    Klimov, S. I., et al. (1997) ASPI Experiment: Measurements of fields and waves on board the Interball-1 mission, Ann. Geophys., 15, 514–527.ADSCrossRefGoogle Scholar
  25. 25.
    Hesse, M., J. Birn, and D. Winske (1997) On the ion scale structure of thin current sheets in the magnetotail, Phys. Scr., T74, 63–75.ADSCrossRefGoogle Scholar
  26. 26.
    Hesse, M., J. Bim, and D. Winske (1998) Formation and structure of thin current sheets: Dipolarization, Substorms-4, edited by S. Kokubun and Y. Kamide, Kluwer Acad. Pub., 727–730.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Vahe Peroomian
    • 1
  • Maha Ashour-Abdalla
    • 1
  • Lev M. Zelenyi
    • 2
  • Anatoli Petrukovich
    • 2
  1. 1.UCLA Institute of Geophysics and Planetary PhysicsLos AngelesUSA
  2. 2.Space Research InstituteAcademy of SciencesMoscowRussia

Personalised recommendations