Skip to main content

Towards Improved Applications of Cell-Free Protein Biosynthesis - The Influence of mRNA Structure and Suppressor tRNAS on the Efficiency of the System

  • Chapter
RNA Biochemistry and Biotechnology

Part of the book series: NATO Science Series ((ASHT,volume 70))

  • 518 Accesses

Abstract

The cell-free protein biosynthesis has the potential to become a powerful technology for the biochemical research in particular in the determination of the structure and function of proteins. The number of possible applications is rising with the obtainable yields and with the expanded feasibility of introducing modified amino acids into proteins. Here we describe the influence of two RNA translation components, the mRNA and the suppressor tRNA, on the efficiency of protein biosynthesis.

It is shown that the rate limiting factor of the cell-free translation of the two proteins dihydrofolate reductase (DHFR) and fatty acid binding protein (FABP) is not the initiation or termination step. The efficiency of peptide bond formation in the nascent protein varies between the two genes but is independent on the size of the coding sequences. The poor translation of DHFR can be improved when its coding sequence is fused with a part of the more efficiently translated FABP gene.

We compared different amber suppressor tRNAs on the level of translational efficiency and aminoacylation capacity. Our results show that in most cases the aminoacylation rate of the tRNAs is not the limiting factor of suppression. An E. coli tRNALeuCUA exhibits the highest translational efficiency of the examined tRNAs. So this tRNALeuCUA may be a starting point to construct more efficient tRNAs for the introduction of unnatural amino acids into proteins in the in vitro translation system by eliminating the synthetase mediated aminoacylation of the tRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cronenberger, J.H. and Erdmann, V.A. (1975). Stimulation of polypeptide polymerization by blocking of free sulphydryl groups in Escherichia coli ribosomal proteins. J. Mol. Biol. 95, 125–137

    Article  PubMed  CAS  Google Scholar 

  2. De Smit M.H. and Van Duin J. (1990). Control of prokaryotic translational initiation by mRNA secondary structure. Progr. Nucl. Acid Res. Mol. Biol. 38, 1–35

    Article  Google Scholar 

  3. Fuchs, U., Stiege, W., Erdmann, V.A. (1997). Ribonucleolytic activities in the Escherichia coli in vitro translation system and in its separate components. FEBS Lett. 414, 362–364

    Article  PubMed  CAS  Google Scholar 

  4. Gold L., Pribnow, D., Schneider, T., Shinedling, S., Singer, B.S., Stormo, G. (1981). Translational initiation in prokaryotes. Annu. Rev. Microbiol. 35, 365–405

    Article  PubMed  CAS  Google Scholar 

  5. Grosjean H., Sankoff D., Jou W.M., Fiers W., Cedergren R.J. (1978). Bacteriophage MS2 RNA: a correlation between the stability of the codon: anticodon interaction and the choice of code words. J. Mol. Evolution 12, 113–119

    Article  CAS  Google Scholar 

  6. Hall M.N., Gabay J., Débarbouillé M., Schwartz M. (1982). A role for mRNA secondary structure in the control of translation initiation. Nature 295, 616–618

    Article  PubMed  CAS  Google Scholar 

  7. Haukanes B.I., Kvam C. (1993). Application of magnetic beads in bioassays. Biotechnology 11, 60–63

    Article  PubMed  CAS  Google Scholar 

  8. Ikemura T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409

    Article  PubMed  CAS  Google Scholar 

  9. Karginov V.A., Mamaev S.V., Hecht S.M. (1997). In vitro suppression as a tool for the investigation of translation initiation, Nucleic Acid Research 25, 3912–3916

    Article  CAS  Google Scholar 

  10. Kleina L.G., Masson J.M., Normanly J., Abelson J., Miller J.H. (1990). Construction of Escherichia coli amber suppressor tRNA genes. I1. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol. 213, 705–717

    Article  PubMed  CAS  Google Scholar 

  11. Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    Article  PubMed  CAS  Google Scholar 

  12. Merk, H., Stiege, W., Tsumoto, K., Kumagai, I., Erdmann, V.A., Cell-free expression of two single—chain monoclonal antibodies against lysozyme — Effect of domain arrangement on the expression. J. Biochem., in press

    Google Scholar 

  13. Normanly J., Ogden R.C., Horvath S.J., Abelson J. (1986a). Changing the identity of a transfer RNA. Nature 321, 213–219

    Article  CAS  Google Scholar 

  14. Normanly J., Masson J.M., Kleina L.G., Abelson J., Miller J.H. (1986b). Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA. Proc. Nat. Acad. Sci. 83, 6548–6552

    Article  CAS  Google Scholar 

  15. Peterson ET, Uhlenbeck OC (1992). Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 31, 10380–10389

    Article  PubMed  CAS  Google Scholar 

  16. Ringquist S., Shinedling S., Barrick D., Green L., Hinkley J., Stormo G.D., Gold L. (1992). Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6, 1219–1229

    Article  PubMed  CAS  Google Scholar 

  17. Robertson S.A., Ellmann J.A., Schultz P.G. (1991). A general and efficient route for chemical aminoacylation of transfer RNAs. J. Am. Chem. Soc. 113, 2722–2729

    Article  CAS  Google Scholar 

  18. Sambrook J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning. Cold Spring Harbour Laboratory Press

    Google Scholar 

  19. Sampson J.R., Uhlenbeck O.C. (1988). Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Nat. Acad. Sci. 85, 1033–1037

    Article  PubMed  CAS  Google Scholar 

  20. Stiege W., Erdmann V.A. (1995) The potentials of the in vitro protein biosynthesis system. J. Biotechnol. 41, 81–90

    Article  PubMed  CAS  Google Scholar 

  21. Triana-Alonso F.J., Dabrowski M., Wadzack J., Nierhaus K.H. (1995) Self-coded 3’-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J. Biol. Chem. 270, 6298–6307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gerrits, M., Merk, H., Stiege, W., Erdmann, V.A. (1999). Towards Improved Applications of Cell-Free Protein Biosynthesis - The Influence of mRNA Structure and Suppressor tRNAS on the Efficiency of the System. In: Barciszewski, J., Clark, B.F.C. (eds) RNA Biochemistry and Biotechnology. NATO Science Series, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4485-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4485-8_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5862-6

  • Online ISBN: 978-94-011-4485-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics