Skip to main content

Fluorescence Microscopy on Single Light Harvesting Complexes

  • Chapter
  • 18 Accesses

Abstract

The capturing of sun light by antenna complexes of photosynthetic units in bacteria and plants has long been a subject of intense studies /1/. A wealth of information from optical spectroscopy ranging from fs transient absorption to low temperature spectral hole burning is known nowadays /2, 3/. In the recent past the successful analysis of the crystal structure of the light harvesting 2 complex (LH2) of the photosynthetic bacterium Rhodopseudomonas Acidophila /4, 5/ has promoted considerable experimental and theoretical effort to analyze the energy transfer dynamics within this complex 131. From the crystal structure it is clear that the bacteriochlorophyll (BChl) A molecules being the major chromophores responsible for capturing sun light in the complex are organized in two coplanar rings with a distance of 15 Å. Ring 1 consists out of 9 BChl A molecules with large intermolecular spacing. Ring 2 comprises 18 BChl A molecules in close proximity /4/. Both rings are ‘connected’ by carotenoids. The large intermolecular spacing and their mutual orientation leave the BChl A molecules in ring 1 uncoupled /6, 7/, whereas the BChl A molecules in ring 2 show a strong intermolecular coupling thus forming a ring shaped molecular aggregate /4, 5/. The main absorption of the chromophores in ring 1 lies around 800 nm whereas the absorption band of the aggregate of molecules in ring 2 is centered around 850 nm. From time resolved optical measurements it is clear that there is a fast energy transfer (timeconstant = 1ps) between the molecules in ring 1 and 2 /6/. Once the excitation energy has reached ring 2 it is delocalized in the ring on a timescale of roughly 100 fs /8/. The thermal equilibrium within ring 2 is reached on a ps timescale /9, 10/. Any structural change in the rings caused by phonons or slow protein motions will cause a reduction in symmetry of the ring and significantly alter the energy level scheme together with a change in the radiative properties of the complex /11, 12/. The light emitted by a ring with circular symmetry is randomly polarized in the plane of the ring. Any symmetry reduction of the ring will create elliptically or linearly polarized light.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Photosynthetic Bacterium; Clayton, R.K. and Sistrotn, W.R. Eds, Plenum Press: New York, 1978

    Google Scholar 

  2. Antennas and Reaction Centers of Photosynthetic Bacteria; Michel-Beyerle, M.E. Ed, Springer-Verlag: Berlin, 1985

    Google Scholar 

  3. Light Harvesting Physics. J. Phys. Chem. B. 101.(1997) pp.7179–7360.

    Google Scholar 

  4. G. McDermott; S.M. Prince; R.H. Friend; A.M. Hawthornthwaite-Lawless; A.M. Papiz; RJ. Cogdell; N.W. Isaacs Nature 374 (1995) 517.

    Article  CAS  Google Scholar 

  5. A.A. Freer; S.M. Prince; S.M. Sauer; M. Papiz; A. Hawthornthwaite-Lawless; G. McDermott; R.J. Cogdell; N.W. Isaacs Structure 4 (1996) 449.

    Article  CAS  Google Scholar 

  6. R. Jimenez; S.N. Dikshit; S.E. Bradforth; G.R. Fleming J. Phys. Chem. 100 (1996) 6825.

    Article  CAS  Google Scholar 

  7. K. Sauer; R.J. Cogdell; S.M. Prince; A. Freer; N.W. Isaacs; H. Scheer Phtochem. Photobiol. 64 (1996) 564.

    Article  CAS  Google Scholar 

  8. R.G. Alden; E. Johnson; V. Nagarajan; W.W. Parson; C.J. Law; R.G. Cogdell. J. Phys. Chem. 101(1997)4667.

    CAS  Google Scholar 

  9. Y.-Z. Ma; R.J. Cogdell; T. Gillbro J. Phys. Chem. 101 (1997) 1087.

    CAS  Google Scholar 

  10. X. Hu; T. Ritz; A. Damjanovic; K. Schulten J. Phys. Chem. 101 (1997) 3854.

    CAS  Google Scholar 

  11. U.R. Monshouwer; M. Abrahamsson; F. van Mourik; R. van Grondelle. J. Phys. Chem. 101 (1997)7241.

    CAS  Google Scholar 

  12. J.A. Leegwater J. Phys. Chem. 100 (1996) 14403.

    Article  CAS  Google Scholar 

  13. R.J. Cogdell; A. Hawthornthwaite, In The Photosynthetic Reaction Center; Deisenhofer, J., Norris, J. R. Eds.; Academic Press: San Diego, 1993; pp 23–42.

    Chapter  Google Scholar 

  14. A. Gruber; A. Dräb enstedt; C. Tietz; L. Fleury; J. Wrachtrup; C. von Borczyskowski Science 276 (1997) 2012.

    Article  CAS  Google Scholar 

  15. M.A. Bopp; Y. Jia; L. Li; R. Cogdell; M. Hochstrasser Proc. Natl. Acad. Sci. USA 94 (1997) 10630; A.M. von Oijen, M. Ketelaars, J. Köhler, T.J. Aartsma, J. Schmidt J. Phys. Chem. B 102 (1998)9363

    Article  CAS  Google Scholar 

  16. T. Ha; T. Enderle; D.S. Chemla; P.R. Selvin; S. Weiss Phys. Rev. Lett. 77 (1996) 3979.

    Article  CAS  Google Scholar 

  17. J.T.M. Kennis; M. Streltsov; H. Permentier; T.J. Aartsma; J. Amesz J. Phys. Chem. B. 101 (1998)8369.

    Article  Google Scholar 

  18. T. Pullerits; M. Chachisvilis; V. Sundström J. Phys. Chem. 100 (1996) 10787.

    Article  CAS  Google Scholar 

  19. J.N. Sturgis; B. Robert. J. Phys. Chem. B 101 (1997) 7227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tietz, C., Dräbenstedt, A., Schuster, J., Wrachtrup, J. (1999). Fluorescence Microscopy on Single Light Harvesting Complexes. In: Greve, J., Puppels, G.J., Otto, C. (eds) Spectroscopy of Biological Molecules: New Directions. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4479-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4479-7_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5919-0

  • Online ISBN: 978-94-011-4479-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics