Skip to main content

Abstract

Ethylene receptors from Arabidopsis contain domains with similarity to the two-component signal transduction systems originally identified in bacteria. The ETR1 ethylene receptor, for example, has both histidine kinase and response regulator domains. We are interested in how the two-component system has been adapted for signal transduction in eukaryotes and, more specifically, ethylene signal transduction in plants. In order to biochemically characterize the histidine kinase domain of ETR1, this portion of the protein was transgenically expressed in yeast. Auto-phosphorylation was observed upon incubation with radiolabeled ATP. Based on the acid/base stability of the phospho-amino acid and site-directed mutagenesis, ETR1 was demonstrated to contain histidine kinase activity. In addition to its enzymatic function, the histidine kinase domain of ETR1 bound CTR1, a Raf-like protein kinase that acts in the ethylene signal transduction pathway. This interaction occurred in ETR1 mutants that lacked residues required for histidine kinase activity. These data suggest that the histidine kinase domain of ETR1 performs both an enzymatic and a physical role in ethylene signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–674.

    Article  PubMed  CAS  Google Scholar 

  2. Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  3. Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene response gene ETR1: Similarity of product to two-component regulators, Science 262, 539–544.

    Article  PubMed  CAS  Google Scholar 

  4. Kieber, J.J., Rothenberg, M., Roman, G., Feldman, K.A. and Ecker, J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases, Cell 72, 427–441.

    Article  PubMed  CAS  Google Scholar 

  5. Schaller, G.E. and Bleecker, A.B. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene, Science 270, 1809–1811.

    Article  PubMed  CAS  Google Scholar 

  6. Hua, J., Chang, C., Sun, Q. and Meyerowitz, E.M. (1995) Ethylene sensitivity conferred by Arabidopsis ERS gene, Science 269, 1712–1714.

    Article  PubMed  CAS  Google Scholar 

  7. Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B. and Meyerowitz, E.M. (1998) ETR2 is an ETRl-like gene involved in ethylene signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 5812–5817.

    Article  PubMed  CAS  Google Scholar 

  8. Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R. and Meyerowitz, E.M. (1998) EIN4 and ERS2 are members of the putative ethylene receptor family in Arabidopsis, Plant Cell, 10, 1321–1332.

    PubMed  CAS  Google Scholar 

  9. Clark, K.L., Larsen, P.B., Wang, X. and Chang, C. (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS1 ethylene receptors, Proc. Natl. Acad. Sci. USA 95, 5401–5406.

    Article  PubMed  CAS  Google Scholar 

  10. Stock, J.B., Ninfa, A.J.,and Stock, A.M. (1989) Protein phosphorylation and regulation of adaptive responses in bacteria, Microbiol. Reviews 53, 450–490.

    CAS  Google Scholar 

  11. Parkinson, J.S. (1993) Signal transduction schemes of bacteria, Cell 73, 857–871.

    Article  PubMed  CAS  Google Scholar 

  12. Swanson, R.V., Alex, L.A. and Simon, M.I. (1994) Histidine and aspartate phosphorylation: two-component systems and the limits of homology, Trends Biochem. 19, 485–490.

    Article  CAS  Google Scholar 

  13. Gamble, R.L., Coonfield, M.L. and Schaller, G.E. (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 7825–7829.

    Article  PubMed  CAS  Google Scholar 

  14. Posas, F., Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Thai, T.C. and Saito, H. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two component” osmosensor, Cell 86, 865–875.

    Article  PubMed  CAS  Google Scholar 

  15. Brandstatter, I. and Kieber, J.J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis, Plant Cell 10, 1009–1019.

    PubMed  CAS  Google Scholar 

  16. Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C. and Mizuno, T. (1998) Response regulators implicated in his-to-asp phosphotransfer signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 2691–2696.

    Article  PubMed  CAS  Google Scholar 

  17. Miyata, S.-I., Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana, FEBS Lett. 437, 11–14.

    Article  PubMed  CAS  Google Scholar 

  18. Popov, K.M., Kedishvili, N.Y., Zhao, Y., Shimomura, Y., Crabb, D.W. and Harris, R.A. (1993) Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases, J. Biol. Chem. 268, 26602–26606.

    PubMed  CAS  Google Scholar 

  19. Popov, K.M., Zhao, Y., Shimomura, Y., Kuntz, M.J. and Harris, R.A. (1992) Branched-chain alpha-ketoacid dehydrogenase kinase: Molecular cloning, expression, and sequence similarity with histidine protein kinases, J. Biol. Chem. 267, 13127–13130.

    PubMed  CAS  Google Scholar 

  20. Yeh, K.-C. and Lagarias, J.C. (1998) Eukaryotic phytochromes:Light-regulated serine/threonine protein kinases with histidine kinase ancestry, Proc. Natl. Acad. Sci. USA 95, 13976–13981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gamble, R.L., Coonfield, M.L., Randlett, M.D., Schaller, G.E. (1999). The Role of Two-Component Systems in Ethylene Perception. In: Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4453-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4453-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5910-7

  • Online ISBN: 978-94-011-4453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics