Skip to main content

Abstract

The paper concerns two aspects of the role of 1-aminocyclopropane-1-carboxylate oxidase (ACO) in the biosynthesis of ethylene. First, a mechanism is proposed to account for the provision of ascorbate to the enzyme functioning in the plant cell. Evidence indicates that the enzyme is located in the apoplasm, at least in ripening fruit. It is suggested that ascorbate in the apoplast remains in a reduced state by the outward flow of reducing potential across the plasma membrane. Second, ACO is proposed to have evolved from an ancestral Fe (II)-dependent dioxygenase so as to enhance ethylene production as a regulated signal of plant stress. Among extant non-flowering plants, ACO activity has been found only in seedlings of representatives of the Coniferales and Gnetales. These results suggest that ACO arose relatively late in the evolution of the land plants; an evolutionary event reversed by suppressing expression in genetically engineered fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prescott, A.G. (1993) A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet), J. Expt. Bot. 44, 849–861.

    Article  CAS  Google Scholar 

  2. Roach, P.L., Clifton, I.J., Fulop, V., Harlos, K., Barton, G.J., Hajdu, J., Andersson, I., Schofield, C.J. and Baldwin, J.E. (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes, Nature 375, 700–704.

    Article  PubMed  CAS  Google Scholar 

  3. Prescott, A.G. and John, P. (1996) Dioxygenases: molecular structure and role in plant metabolism, Annu. Rev. Plant Phys. Plant Mol. Biol. 47, 245–271.

    Article  CAS  Google Scholar 

  4. Bouzayen, M., Latché, A. and Pech, J.C. (1990) Subcellular localization of the sites of conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene in plant cells, Planta 180, 175–180.

    Article  CAS  Google Scholar 

  5. Peck, S.C., Reinhardt, D., Olson, D.C., Boiler, T. and Kende, H. (1992) Localization of the ethylene-forming enzyme from tomatoes, 1-aminocyclopropane-1-carboxylate oxidase in transgenic yeast, J. Plant Physiol. 140, 681–686.

    Article  CAS  Google Scholar 

  6. Ayub, R.A., Rombaldi, C., Petitprez, M, Latché, A., Pech, J.C. and Leliévre, J.M. (1993) Biochemical and immunocytological characterization of ACC oxidase in transgenic grape cells, in J.C. Pech, A. Latché and C. Balagué (eds.), Cellular and Molecular Aspects of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, pp. 98–99.

    Google Scholar 

  7. Rombaldi, C. Leliévre, J.M., Latché, A., Petitprez, M., Bouzayen, M. and Pech, J.C. (1994) Immunocytolocalization of 1-aminocyclopropane-1-carboxylic acid oxidase in tomato and apple fruit, Planta 192, 453–460.

    Article  PubMed  CAS  Google Scholar 

  8. Reinhardt, D., Kende, H. and Boiler, T. (1994) Subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in tomato cells, Planta 195, 142–146.

    Article  CAS  Google Scholar 

  9. Latché, A., Dupille, E., Rombaldi, C., Cleyet-Marel, J.C, Leliévre, J.M. and Pech, J.C. (1993) Purification, characterization and subcellular localization of ACC oxidase from fruits, in J.C. Pech, A. Latché and C. Balagué (eds.), Cellular and Molecular Aspects of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, pp. 39–45.

    Google Scholar 

  10. Foyer, C.H. (1993) Ascorbic acid., in R.G. Alscher and J.L. Hess (eds.), Antioxidants in Higher Plants, CRC Press Boca Racon, pp.31–58.

    Google Scholar 

  11. Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants, Ann. Bot, 78, 661–669.

    Article  CAS  Google Scholar 

  12. John, P. (1997) Ethylene biosynthesis: the role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, and its possible evolutionary origin, Physiol. Plant. 100, 583–592.

    Article  CAS  Google Scholar 

  13. Horemans, N., Asard, H., and Caubergs, R.J. (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants, Plant Physiol. 104, 1455–1458.

    PubMed  CAS  Google Scholar 

  14. Jalukar, V., Kelley, P.M. and Njus, D. (1991) Reaction of ascorbic acid with cytochrome b561 — concerted electron and proton transfer, J. Biol. Chem. 266, 6878–6882.

    PubMed  CAS  Google Scholar 

  15. Malerba, M., Crosti, P., Armocida, D. and Bianchetti, R. (1995) Activation of ethylene production in Acer pseudoplatanus L. cultured cells by fusicoccin, J. Plant Physiol. 145, 93–100.

    Article  CAS  Google Scholar 

  16. Malerba, M., Crosti, P. and Bianchetti, R. (1995) Trans-plasma membrane reduction of ferricyanide induces an activation of 1-aminocyclopropane-1-carboxylic acid oxidase in Acer pseudoplatanus L cultured cells, J. Plant Physiol. 145, 580–582.

    Article  CAS  Google Scholar 

  17. Malerba, M., Crosti, P. and Bianchetti, R. (1995) Regulation of 1-aminocyclopropane-1-carboxylic acid oxidase by the plasmalemma proton pump in Acer pseudoplatanus L cultured cells, J. Plant Physiol. 145, 711–716.

    Article  Google Scholar 

  18. Malerba, M., Crosti, P. and Bianchetti, R. (1995) Ferricyanide induced ethylene production is a plasma membrane proton pump dependent 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activation, J. Plant Physiol. 147, 182–190.

    Article  CAS  Google Scholar 

  19. Malerba, M. and Bianchetti, R. (1996) A mutant of Arabidopsis thaliana with decreased activity of the plasma-membrane proton pump lacks the fusicoccin-dependent stimulation of ethylene synthesis, J. Plant Physiol. 147, 614–616.

    Article  CAS  Google Scholar 

  20. Yu, Y., Adams, D.O. and Yang, S.F. (1980) Inhibition of ethylene production by 2,4-dintrophenol and high temperature, Plant Physiol. 66, 286–290.

    Article  PubMed  CAS  Google Scholar 

  21. John, P., Porter, A.J.R. and Miller, A.J. (1985) Activity of the ethylene-forming enzyme measured in vivo at different cell potentials, J. Plant Physiol. 121, 397–406.

    Article  CAS  Google Scholar 

  22. Ververidis, P., and John, P. (1991) Complete recovery in vitro of ethylene-forming enzyme activity, Phytochemistry 30, 725–727.

    Article  CAS  Google Scholar 

  23. Ververidis, P. (1991) Characterisation and partial purification of the enzyme responsible for ethylene synthesis from 1-aminocyclopropane-1-carboxylic acid in plant tissues, PhD thesis, The University of Reading.

    Google Scholar 

  24. Rautenkranz, A.A.F., Li, L., Möchler, Mörtinoia, E., and Oertli, J.J. (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves, Plant Physiol. 106, 187–193.

    PubMed  CAS  Google Scholar 

  25. Abeles, F.B. (1973) Ethylene in Plant Biology, Academic Press, New York.

    Google Scholar 

  26. Osborne, D.J. (1989) The control role of ethylene in plant growth and development, in H. Clijsters et al. (eds.), Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, Kluwer Academic Publishers, Dordrecht, pp. 1–11.

    Chapter  Google Scholar 

  27. Osborne, D.J., Walters, J., Milborrow, B.V., Norville, A. and Stange, L.M.C. (1996) Evidence for a non-ACC ethylene biosynthesis pathway in lower plants, Phytochemistry 42, 51–60.

    Article  CAS  Google Scholar 

  28. John, P., Iturriagagoitia-Bueno, T., Lay, V., Thomas, P.G., Hedderson, T.A.J., Prescott, A.G., Gibson, E.J. & Schofield, C.J. (1997) 1-aminocyclopropane-1-carboxylate oxidase: molecular structure and catalytic function, in A.K. Kanellis et al. (eds.) Biology and Biotechnology of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, pp. 15–21.

    Chapter  Google Scholar 

  29. Hamilton, A.J., Lycett, G.W. and Grierson, D. (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants, Nature 346, 284–287.

    Article  CAS  Google Scholar 

  30. Summers, J.E., Voesenek, L.A.C.J., Blom, C.W.P.M., Lewis, M.J. and Jackson, M.B. (1996) Potamogeton pectinatus is constitutively incapable of synthesizing ethylene and lacks 1-aminocyclopropane-1-carboxylic acid oxidase, Plant Physiol. 111, 901–908.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

John, P., Reynolds, E.A., Prescott, A.G., Bauchot, AD. (1999). ACC Oxidase in the Biosynthesis of Ethylene. In: Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4453-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4453-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5910-7

  • Online ISBN: 978-94-011-4453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics