Skip to main content

Process and Equipment Design for Utility-Based Pollution Prevention

  • Chapter
Tools and Methods for Pollution Prevention

Part of the book series: NATO Science Series ((ASEN2,volume 62))

Abstract

At present, designing processes is considered necessary as part of sustainable development in the process industries. Energy savings and pollution prevention have become priorities. Thus, it is necessary to place great emphasis on waste minimisation and energy efficiency in the context of good economic performance and good health and safety practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Linnhoff B, Townsend, D.W., Boland, D., Hewitt, G.F., Thomas, B.E.A., Guy, A.R. and Marsland, R.H. (1982) User Guide on Process Integration for the Efficient Use of Energy, IChemE, Rugby, UK.

    Google Scholar 

  2. Smith, R. (1995) Chemical Process Design, McGraw-Hill, Inc., New York.

    Google Scholar 

  3. El-Halwagi, M.M. (1997) Pollution Prevention through Process Integration: Systematic Design Tools, Academic Press, San Diego.

    Google Scholar 

  4. Best Available Energy Technologies for Our Environment, Thermie Directorate-General for Energy (DG XVII), Commission of the European Communities, Brussels (Information Booklet).

    Google Scholar 

  5. Furfari, S. (1997) Emissions and Climate Change: A Challenge for Technology and the Society, Fourth International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, 7–10 July 1997.

    Google Scholar 

  6. Stehlík, P., Hajný, Z., Jegla, Z. and Kohoutek, J. (1998) Heat Exchanger Network and Shell-and-Tube Heat Exchangers for Sustainable Development, International Conference Heat Exchangers for Sustainable Development, Lisbon, Portugal, 15–18 June 1998.

    Google Scholar 

  7. Stehlík, P., Jegla, Z. and Hajný, Z. (1996) A Simple method for Process Retrofit Using Pinch Technology, 12-th International Congress of Chemical and Process Engineering CHISA ‘86, Prague, Czech Republic.

    Google Scholar 

  8. Stehlík, P., Nemcanský, J., Král, D. and Swanson, L.W. (1994) Comparison of Correction Factors for Shell-and-Tube Heat Exchangers with Segmental or Helical Baffles, Heat Transfer Engineering, 15, 55–65.

    Article  Google Scholar 

  9. Král, D., Stehlík, P., van der Ploeg, H.J. and Master, B.I. (1996) Helical Baffles in Shell-and-Tube Heat Exchangers, Part I: Experimental Verification, Heat Transfer Engineering, 17, 93–101.

    Article  Google Scholar 

  10. Smith, R. and Delaby, O. (1991) Targeting Flue Gas Emissions, Trans IChemE, 69, Part A, 492–505.

    CAS  Google Scholar 

  11. Stehlík, P. and Fiala, A. (1997) Some Aspects of Utilities Selection, Energy Saving and Emissions Reduction in Process Industry, Fourth International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, 7–10 July 1997.

    Google Scholar 

  12. Stehlík, P., Fiala, A. and Hajný, Z. (1997) Energy Saving in Processes Using Simple Thermodynamic Models of Utilities, Conference ASME Asia, Singapore, 30.9.-2.10. 1997.

    Google Scholar 

  13. Linnhoff, B. and de Leur, J. (1988) Appropriate Placement of Furnaces in the Integrated Process, IChemE Symposium Understanding Process Integration II, UMIST, Manchester, UK, 22–23 March 1988.

    Google Scholar 

  14. Hall, S.G. (1989) Targeting for Multiple Utilities in Pinch Technology, Ph.D. Thesis, UMIST, DPI, Manchester, UK, November 1989.

    Google Scholar 

  15. Stehlík, P., Zagermann, S. and Gangler, T. (1994) Furnace Integration into Processes Justified by Detailed Calculation Using a Simple Mathematical Mode,l Chem. Eng. and Proc. 34 9–23.

    Google Scholar 

  16. Stehlík, P., Kohoutek, J. and Jebácek, V. (1996) Simple Mathematical Model of Furnaces and Its Possible Applications, Computers & Chem. Eng. 20 No. 11, 1369–1372.

    Article  Google Scholar 

  17. Stehlík, P., Jegla, Z. and Kohoutek, J. (1997) Optimization of Plate Type Air Preheaters in Process Furnaces, National Heat Transfer Conference, Baltimore, USA, August 1997.

    Google Scholar 

  18. Stehlík, P., Jegla, Z. and Popela, P. (1998) Optimum Design of Plate Type Heat Exchangers for Preheating Air, 11th International Heat Transfer Conference, Kyongju, Korea, 23–28 August 1998.

    Google Scholar 

  19. Stehlík, P., Kana, R. and Puchýr, R. (1997) Possible Approach for NOxEmissions Prediction in Process Industry, Fourth International Conference on Technologies and Combustion for a Clean Environment Lisbon, Portugal, 7–10 July 1997.

    Google Scholar 

  20. Dhole, V. R. and Linnhoff, B. (1993) Total Site Targets for Fuel, Co-generation, Emissions, and Cooling, Computers & Chem Energy 17, s101-s109.

    CAS  Google Scholar 

  21. Linnhoff, B. (1993) Total Site Integration and Emissions Targeting by Pinch Analysis, Journal of Israel Institute of Chemical Engineers Professor Willliam Resnick Memorial Issue, April 1993, 81–87.

    Google Scholar 

  22. Wang, Y. P. and Smith, R. (1994) Wastewater Minimization, Chem. Engng. Sci. 49, 981–1006.

    Article  CAS  Google Scholar 

  23. Wang, Y. P. and Smith, R. (1995) Wastewater Minimization with Flowrate Constraints Trans IChemE 73 889–904.

    CAS  Google Scholar 

  24. Heggs, P. J. and Narataruksa, P. (1998) Design of Flexible Mulstream Plate Heat Exchangers, International Conference Heat Exchangers for Sustainable Development Lisbon, Portugal, 15–18 June 1998.

    Google Scholar 

  25. Hewitt, J. and Pugh, S. (1998) Approximate Methods for Costing and Designing Heat Exchangers, International Conference Heat Exchangers for Sustainable Development Lisbon, Portugal, 15–18 June 1998.

    Google Scholar 

  26. Davis, J. F., Stephanopoulos, G. and Venkatasubramanian V. (1996) Intelligent Systems in Process Engineering, Trans IChemE, 73, Part A, 919–930.

    Google Scholar 

  27. Grossmann, I. E. (1996) Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis, Advances in Chemical Engineering, 23, 171–246.

    Article  CAS  Google Scholar 

  28. Asante, N. D. K. and Zhu, X. X. (1996) An Automated Approach for Heat Exchanger Retrofit Featuring Minimal Topology Modifications, Computers & Chem. Eng., 20, S7–S12.

    Article  CAS  Google Scholar 

  29. Asante, N. D. K. and Zhu, X. X. (1997) An Automated and Interactive Approach for Heat Exchanger Network Retrofit, Trans IChemE 75 Part A, 349–360.

    Article  CAS  Google Scholar 

  30. Tjoe, T. N. and Linnhoff, B. (1986) Using Pinch Technology for Process Retrofit, Chemical Engineering, April 28, 47–60.

    Google Scholar 

  31. Polley, G. T. and Panjeh Shahi, M. H. (1991) Interfacing Heat Exchanger Network Synthesis and Detailed Heat Exchanger Design, TranslChemE, 69, Part A, 455–457.

    Google Scholar 

  32. Reppich, M., Kohoutek, J. and Zagermann, S. (1994) Optimum Design of Baffled Shell-and-Tube Heat Exchangers, Computers & Chem. Eng. 18 S295–S299.

    Article  Google Scholar 

  33. Mukherjee, R. (1998) Effectively Design Shell-and-Tube Heat Exchangers, Chem. Eng. Progress, 94, 21–37.

    CAS  Google Scholar 

  34. Mukherjee, R. (1998) Broaden Your Heat Exchanger Design Skills, Chem. Eng. Progress, 94, 35–43.

    CAS  Google Scholar 

  35. Fiala, A., Stehlík, P and Martinák, P. (1998) Evaluation of Environmental and Economic Process Design through Utilities Selection, 13-th International Congress of Chemical and Process Engineering CHISA ‘88, Prague, Czech Republic.

    Google Scholar 

  36. Jegla, Z., Stehlík, P and Kohoutek, J. (1998) Furnaces Integration into Processes Based on Pinch Analysis, 13-th International Congress of Chemical and Process Engineering CHISA ‘88, Prague, Czech Republic.

    Google Scholar 

  37. Lieberman, N. P. (1989) Process Design for Reliable Operation, 2nded., Gulf Publishing Company, Houston, Texas.

    Google Scholar 

  38. Carvalho, M. G. Semiao, V. S., Lockwood, F. C. and Papadopoulos, C. (1990) Prediction of Nitric Oxides Emissions from an Industrial Glass-Melting Furnace Journal of Inst. of Energy, March 1990, 39–47.

    Google Scholar 

  39. Carvalho, M. G., Semiao, V. S. and Coelho, P. J. (1992) Modelling and Optimization of the NO Formation in an Industrial Glass Furnace, ASME J. Engineering for Industry, 114, 514–523.

    Article  Google Scholar 

  40. Azevedo, J. L. T., Carvalho, M. G., Coelho, P. J., Coimbra, C. F. M. and Nogueira, M. (1993) Modeling of Combustion and NO„ Emissions in Industrial Equipment, Pure & Appl. Chem., 65, 345–353.

    Article  CAS  Google Scholar 

  41. FLUENT (1993) Computational Fluid Dynamics Software, Fluent Europe. Ltd., Sheffild, UK

    Google Scholar 

  42. Kana, R., Stehlík, P. and Puchýr, R. (1998) Simple Mathematical Model for NO Emissions Prediction, 13-th International Congress of Chemical and Process Engineering CHISA’98, Prague, Czech Republic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stehlík, P. (1999). Process and Equipment Design for Utility-Based Pollution Prevention. In: Sikdar, S.K., Diwekar, U. (eds) Tools and Methods for Pollution Prevention. NATO Science Series, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4445-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4445-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5926-5

  • Online ISBN: 978-94-011-4445-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics