Skip to main content

Stability Analysis of Fuzzy Control Loops

  • Chapter
Fuzzy Algorithms for Control

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 14))

  • 332 Accesses

Abstract

Stability of feedback control systems is a main problem in control theory but also in control engineering. It is well known that the feedback loop is the basic structure to track reference signals and to regulate systems in spite of external perturbations. The feedback structure decreases the sensitivity to parameter variation and external disturbances, however the feedback could strongly affect the stability of the system. Thus, an unstable system can be stabilized by means of an appropriated feedback control loop. On the other hand, an open-loop stable system could be destabilized by means of feedback. The interest of the stability studies in fuzzy control has become a controversial question in the fuzzy logic literature. However, in many fuzzy logic industrial control applications, the practical interest of stability analysis cannot be questioned due to safety and reliability requirements. In fact, external disturbances and unexpected parameter changes are usually present in practical control system. Then, before efforts are made to satisfy any conventional control system performance related to speed or accuracy, the ability of a system to come to an equilibrium after external or internal disturbances (stability) is needed. Applications in power plants, chemical plants, vehicles, robots and many others require that the feedback control systems will satisfy this property, i.e., will be stable in all the possible working conditions. Furthermore, in many cases, it is very difficult to assess stability only by experimentation in several working conditions. Then, some tools to generalize the analysis and to be able to guarantee the stability of fuzzy control systems are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aracil, J., García-Cerezo, A., Barreiro, A., and Ollero, A. (1993). Stability analysis of fuzzy control systems based on the conicity criterion. In Lowen, R., editor, Fuzzy Logic: State of the art, System Engineering. Kluwer Academic Publisher.

    Google Scholar 

  • Aracil, J., García-Cerezo, A., and Ollero, A. (1988). Stability of fuzzy control systems: A geometrical approach. In Kulikowski C.A., R. and Ferrate, G. A., editors, Artificial Intelligence, Expert Systems and Languages in Modelling and Simulation. Elsevier Science Publisher B.V., North Holland.

    Google Scholar 

  • Aracil, J., Ollero, A., and García-Cerezo, A. (1989). Stability indices for the global ana­lysis of expert control systems. IEEE Transactions on System Man and Cybernetics, SMC 19(5):988–1007.

    Google Scholar 

  • Boyd, S., Gahoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear matrices inequalities in systems and control theory. SIAM Studies in Applied Mathematics, 15.

    Book  Google Scholar 

  • Braae, M. and Rutherford, D. (1979). Theoretical and linguistic aspects of the fuzzy logic controller. Automatica,15:553–577.

    Article  MATH  Google Scholar 

  • Cao, S., Rees, N., and Feng, G. (1996a). Analysis and design of uncertain fuzzy control systems, part II: Fuzzy controller design. In FUZZ-IEEE’96, pages 647–653, New-Orleans.

    Google Scholar 

  • Cao, S., Rees, N., and Feng, G. (1996b). Stability analysis and design for a class of continuous-time fuzzy control systems. Int. J. Control, 64(6):1069–1087.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C.-L., Chen, P.-C., and Chen, C.-K. (1993). Analysis and design of fuzzy control system. Fuzzy Sets and Systems, 57:125–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Deglas, M. (1984). Invariance and stability of fuzzy systems. Journal of Mathematical Analysis and Application, 99:299–319.

    Article  MathSciNet  Google Scholar 

  • Deglas, M. (1993). A mathematical theory of fuzzy systems. In Gupta, M. and Sanc­hez, E., editors, Information and Decision Processes. North-Holand Publishing Company.

    Google Scholar 

  • Desoer, C. and Vidyasagar, M. (1975). Feedback Systems. Input-Output Properties. Academic Press.

    Google Scholar 

  • Furutani, E., Saeki, M., and Araki, M. (1992). Shifted popov criterion and stability analysis of fuzzy control systems. In ACC’92, pages 2790–2795, Tuscon, Arizona.

    Google Scholar 

  • Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M. (1995). LMI Control Toolbox, For Use with MATLAB. The MATHWORK Inc.

    Google Scholar 

  • García-Cerezo, A. and Ollero, A. (1994). Design of fuzzy control systems from exper­imental data. In EUFIT’94, volume 3, pages 1175–1182.

    Google Scholar 

  • García-Cerezo, A., Ollero, A., and Aracil, J. (1994). Dynamic analysis of fuzzy logic control structures. In Kandel, A. and Langholz, G., editors, Fuzzy Control Systems, pages 141–160. CRC Press.

    Google Scholar 

  • García-Cerezo, A., Ollero, A., and Martínez, J. (1996). Design of a robust high-performance fuzzy path tracker for autonomous vehicles. International Journal of Systems Science, 27(8):799–806.

    Article  MATH  Google Scholar 

  • Hill, D. and Moylan, P. J. (1977). Stability results for nonlinear feedback systems. Automatica, 13:377–382.

    Article  MATH  Google Scholar 

  • Kang, G., Lee, W., and Sugeno, M. (1998). Stability analysis of TSK fuzzy systems. In FUZZ-IEEE’98, pages 555–560.

    Google Scholar 

  • Katoh, R., Yamashita, T., and Singh, S. (1995). Stability analysis of control system

    Google Scholar 

  • having PD type of fuzzy controller. Fuzzy Sets and Systems, 74:321–334.

    Google Scholar 

  • Kiendl, H. and Ruger, J. (1995). Stability analysis of fuzzy control system using facet

    Google Scholar 

  • functions. Fuzzy Sets and Systems, 70:275–285.

    Google Scholar 

  • Kim, W, Ahn, C., and Kwon, W. (1995). Stability analysis and stabilization of fuzzy state space models. Fuzzy Sets and Systems,71:131–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiska, J., Gupta, M., and Nikiforuk, P. (1985). Energistic stability of fuzzy dynamic systems. IEEE Trans. on Systems, Man and Cybernetics,5(15):783–792.

    Article  Google Scholar 

  • Kitamura, S. and Jurozumi, T. (1991). Extended circle criterion and stability analysis of fuzzy control system. In IFES’91, pages 634–643.

    Google Scholar 

  • Langari, G. and Tomizuka, M. (1990). Stability of fuzzy linguistic control systems. In 29th CDC’90, pages 2185–2190, Honolulu.

    Google Scholar 

  • Mamdani, E. and Assilian, S. (1974). Application of fuzzy algorithms for control of simple dynamic plant. In IEE’74, volume 121, pages 1585–1588.

    Google Scholar 

  • Marin, J. P. (1995). Conditions necessaires et suffisantes de stabilité quadratique d’une classe de systèmes flous. In LFA’95, pages 240–247, Paris.

    Google Scholar 

  • Marin, J. P. (1996). H performance analysis of fuzzy system using quadratic storage function. In AADECA’96, pages 7–11, Buenos-Aires.

    Google Scholar 

  • Marin, J. P. and Titli, A. (1995). Necessary and sufficient conditions for quadratic stability of a class of Tagaki-Sugeno fuzzy systems. In EUFIT’95, pages 786–790, Aachen.

    Google Scholar 

  • Marin, J. P. and Titli, A. (1996). Robust performances of closed-loop fuzzy systems: A global Lyapuov approach. In FUZZ-IEEE’96, pages 732–737, New-Orleans.

    Google Scholar 

  • Marin, J. P. and Titli, A. (1997a). Fuzzy stability analysis of fuzzy systems, part I : Quadratic parametrization of fuzzy systems. In EUFIT’97, volume 2, pages 1294­-1299, Aachen.

    Google Scholar 

  • Marin, J. P. and Titli, A. (1997b). Fuzzy stability analysis of fuzzy systems, part II: Fuzzification of Lyapunov theory and application. In EUFIT’97, volume 2, pages 1300–1305, Aachen.

    Google Scholar 

  • Melin, C. and Ruiz, F. (1997). A passivity framework for fuzzy control system stability: case of two-input-single-output fuzzy controller. In 6th International Conference on Fuzzy Systems, pages 367–370, Barcelona (Spain).

    Chapter  Google Scholar 

  • Myszkorowski, P. and Longchamp, R. (1993). On the stability of fuzzy control systems. In 32th CDC’93,pages 1751–1752, San Antonio.

    Google Scholar 

  • Ollero, A., García-Cerezo, A., and Aracil, J. (1995). Design of robust rule-based fuzzy controllers. Fuzzy Sets and Systems, 70:249–273.

    Article  MathSciNet  Google Scholar 

  • Ollero, A., García-Cerezo, A., Aracil, J., and Barreiro, A. (1993). Stability of fuzzy control systems. In Driankov, D., editor, An Introduction to Fuzzy Control, pages 245–292. Springer-Verlag.

    Google Scholar 

  • Ollero, A., García-Cerezo, A., and Martínez, J. (1996). Design of fuzzy logic controllers from heuristic knowledge and experimental data. In XIII IFAC World Congress, volume A, pages 433–438.

    Google Scholar 

  • Opitz, H. (1993). Fuzzy control and stability criteria. In EUFIT’93, pages 130–136, Aachen, Germany.

    Google Scholar 

  • Ray, S. and Majunder, D. (1984). Application of circle criteria for stability analysis of linear SISO and MIMO system associated with fuzzy logic controllers. IEEE Transaction on Systems, Man, and Cybernetics, SMC-142:345–349.

    Article  Google Scholar 

  • Roxin, E. (1969). Stability in general control system. J. Differential Eq, 1:115–150.

    Article  MathSciNet  Google Scholar 

  • Safonov, M. (1980). Stability and Robustness of Multivariable Feedback Systems. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Sugeno, M. (1985). An introductory survey on fuzzy control. Information Sciences,36:59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15:116–132.

    Article  MATH  Google Scholar 

  • Tanaka, K., Ikeda, K., and Wang, H. (1996). Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, h control theory and linear matrix inequalities. IEEE Trans on Fuzzy Systems, 4(1):1–13.

    Article  Google Scholar 

  • Tanaka, K. and Sano, N. (1994). Robust stabilization problem of fuzzy control systems and its application to backing up truck trailer. IEEE Trans on Fuzzy Systems, 2(2):119–134.

    Article  Google Scholar 

  • Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control system. Fuzzy Sets and Systems,45:135–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Schaft, A. (1996). L2-gain and Passivity Techniques in Nonlinear Control.

    Book  Google Scholar 

  • Lecture Notes in Control and information Sciences, Vol 218. Springer.

    Google Scholar 

  • Vidyasagar, M. (1993). Nonlinear Systems Analysis. Second edition. Prentice Hall, New Jersey, Englewood Cliffs.

    Google Scholar 

  • Wang, L. and Langari, R. (1994). Fuzzy controller design via hyperstability theory. In FUZZ-IEEE’94, pages 178–182, Orlando.

    Google Scholar 

  • Willems, J. (1972). Dissipative dynamical systems, part I: General theory. 22 Arch. Rational Mech. Anal.,145:321–351.

    Article  MathSciNet  Google Scholar 

  • Yamashita, Y. and Hori, T. (1991). Stability analysis of fuzzy control system. In IECON’91, pages 1579–1584, Kobe.

    Google Scholar 

  • Zhao, J., Wertz, V., and Gorez, R. (1996). Fuzzy gain scheduling based on fuzzy models. In FUZZ-IEEE’96, pages 1670–1676, New-Orleans.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ollero, A., Cuesta, F., Marin, J.P., García-Cerezo, A. (1999). Stability Analysis of Fuzzy Control Loops. In: Verbruggen, H.B., Zimmermann, HJ., Babuška, R. (eds) Fuzzy Algorithms for Control. International Series in Intelligent Technologies, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4405-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4405-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5893-3

  • Online ISBN: 978-94-011-4405-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics