Skip to main content

Biological Stability: A Multidimensional Quality Aspect of Treated Water

  • Chapter
Environmental Challenges

Abstract

Regrowth processes in drinking water distribution systems may lead to hygienic, aesthetic and technical problems. These complex processes depend on interactions between microorganisms and (i), compounds serving as energy sources; (ii), environmental conditions (temperature, hydraulics) and (iii), physico-chemical processes (sedimentation, corrosion, disinfection), respectively. The concentration of growth-promoting compounds is considered as the main driving force for regrowth and a large variety of tests has been developed to assess the growth-promoting properties of treated water. These methods range from determining the decrease of the concentration of dissolved organic carbon in a batch test to the assessment of the Biofilm Formation Rate (BFR) in a flow-through test. Biostability assessment of treated water in the Netherlands includes the AOC test in combination with the BFR test. The growth-promoting properties of synthetic materials in contact with treated water are determined with the Biofilm Formation Potential (BFP) test. A complete understanding of regrowth processes enabling to define appropriate control measures requires further research including: (i), the effect of reactive surfaces on the availability of slowly degradable compounds, and (ii), improvement of mathematical models describing regrowth processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beijerinck, M. W.:1891, “Qualitative und quatitative microbiologische Analyse,” Centralblatt für Bakteriologie und parasitenkunde X, 723–727.

    Google Scholar 

  • Bryan, P. E., Kuzminski, L. N., Sawyer, F. M. and Feng, T. H.: 1973, “Taste thresholds of halogens in water”, Jour. Am. Water Works Assoc. 65, 363–368.

    CAS  Google Scholar 

  • Bull, R. J. and Kopfler, F. C.: 1991, Health effects of disinfectants and disinfection by-products, American Water Works Research Foundation, Denver, USA.

    Google Scholar 

  • Camper, A. K., McFeters, G. A., Characlis, W. G. and Jones, W. L.: 1991, “Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems”, Appl. Environ. Microbiol. 57, 2233–2239.

    CAS  Google Scholar 

  • Camper, A. K., Jones, W. L. and Hayes, J. T.: 1996, “Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms,” Appl. Environ. Microbiol. 62,4014–4018.

    CAS  Google Scholar 

  • Clark, F. M., Scott, R. M. and Bone, E.: 1967, “Heterotrophic iron precipitating bacteria,” Jour. Am. Water Works Assoc. 59, 1036–1042.

    CAS  Google Scholar 

  • Dukan, S., Levy, Y., Piriou, P., Guyon, F. and Villon, P.: 1996, “Dynamic modelling of bacterial growth in drinking water networks,” Wat. Res. 30, 1991–2002.

    Article  CAS  Google Scholar 

  • Frankland, P. and Frankland, P. 1894, Micro-organisms in water; their significance, identification and removal, Longmans, Green and Co. London, New York.

    Book  Google Scholar 

  • Heijmans, J. A.: 1928, “De organische stof in het waterleidingbedrijf”, Water en Gas 12, 61–65/69-72.

    Google Scholar 

  • Huck, P. M.: 1990, “Measurement of biodegradable organic matter and bacterial growth potential in drinking water”, Jour. Am. Water Works Assoc. 82(7), 78–86.

    CAS  Google Scholar 

  • Joret, J. C. and Levy, Y.: 1986, “Méthode rapide d’évaluation du carbone éliminable des eaux par voie biologique”, Trib. Cebedeau 510, 39, 3–9.

    CAS  Google Scholar 

  • LeChevallier, M. W.: 1990, “Coliform regrowth in drinking water: a review”, Jour. Am. Water Works Assoc. 82(11), 74–86.

    CAS  Google Scholar 

  • LeChevallier, M. W., Shaw, N. E., Kaplan, L. E. and Bott, T.: 1993, “Development of a rapid assimilable organic carbon method for water”, Appl. Environ. Microbiol. 59, 1526–1531.

    CAS  Google Scholar 

  • Lucena, F., Frais, J. and Ribas, F.: 1990, “A new dynamic approach to the determination of biodegradable dissolved organic carbon in water”, Environmental Technol. 12, 343–347.

    Article  Google Scholar 

  • Rittmann, B. E. and Snoeyink, V. L.: 1984, “Achieving biologically stable drinking water”, Jour. Am. Water Works Assoc. 76:10, 106–114.

    CAS  Google Scholar 

  • Servais, P., Billen, G. and Hascoët, M. C.: 1987, “Determination of the biodegradable fraction of dissolved organic matter in waters”, Wat. Res. 21, 4:445–450.

    Article  CAS  Google Scholar 

  • Servais, P., Laurent, P., Billen, G. and Gatel, D.: 1995 “Development of a model of BDOC and bacterial biomass fluctuations in distribution systems”, Revue des Sciences de l’Eau. 8, 427–462.

    CAS  Google Scholar 

  • Stanfield, G. and Jago, P. H.: 1987, The development and use of a method for measuring the concentration of assimilable organic carbon in water, WRc-report PRU 1628, WRc Medmenham.

    Google Scholar 

  • Van der Kooij, D., Visser, A and Oranje, J. P.: 1982, “Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water”, Antonie van Leeuwenhoek 48, 229–243.

    Article  Google Scholar 

  • Van der Kooij, D., Visser, A., and Hijnen, W. A. M.: 1982, “Determining the concentration of easily assimilable organic carbon in drinking water”, Jour. Am. Water Works Assoc. 74, 540–545.

    Google Scholar 

  • Van der Kooij, D. and Hijnen, W. A. M.: 1984, “Substrate utilisation by an oxalate-consuming Spirillum species in relation to its growth in ozonated water”, Appl. Environ. Microbiol. 47, 551–559.

    Google Scholar 

  • Van der Kooij, D. and Hijnen, W. A. M.: 1985, “Determination of the concentration of maltose-and starch-like compounds in drinking water by growth measurements with a well-defined strain of a Flavobacterium species”, Appl. Environ. Microbiol. 49, 765–771.

    Google Scholar 

  • Van der Kooij, D. and Hijnen, W. A. M.: 1988, “Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water”, Appl. Environ. Microbiol. 54, 2842–2851.

    Google Scholar 

  • Van der Kooij, D.: 1992, “Assimilable organic carbon as an indicator of bacterial regrowth”, Jour. Am. Water Works Assoc. 84(2), 57–65.

    Google Scholar 

  • Van der Kooij, D., and Veenendaal, H. R.: 1994, “Assessment of the biofilm formation potential of synthetic materials in contact with drinking water during distribution”, Proc. Am. Water Works Assoc. Water Qual. Technol. Conf. Miami Florida 1993, pp. 1395–1407.

    Google Scholar 

  • Van der Kooij, D., Veenendaal, H. R., Baars-Lorist, C., van der Klift, H. W. and Drost, Y. C.: 1995, “Biofilm formation on surfaces exposed to treated water”, Wat. Res. 29, 1655–1662.

    Article  Google Scholar 

  • Van der Kooij, D., Vrouwenvelder, H. S. and Veenendaal, H. R.: 1995b, “Kinetic aspects of biofilm formation on surfaces exposed to drinking water”, Wat. Sci. Tech. 32, 61–65.

    Google Scholar 

  • Van der Kooij, D., van Lieverloo, J. H. M., Schellart, J. A. and Hiemstra, P.: 1999, “Maintaining quality without a disinfectant residual”, Jour. Am. Water Works Assoc. 91(1), 55–64.

    Google Scholar 

  • Van der Wende, E., Characklis, W. G. and Smith, D. B.: 1989, “Biofilms and bacterial drinking water quality”, Wat. Res. 23, 1313–1322.

    Article  Google Scholar 

  • Wadowsky, R. M., Yee, R. B., Mezmar, L., Wing, E. J., and Dowling, J. N.: 1982, “Hot water systems as sources of Legionella pneumophila in hospital and non-hospital plumbing fixtures”, Appl. Environ. Microbiol. 43, 1104–1110.

    CAS  Google Scholar 

  • Werner, P.: 1985, “Eine Methode zur Bestimmumg der Verkeimungsneigung von Trinkwasser,” Vom Wasser, 65, 257–27

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Der Kooij, D. (2000). Biological Stability: A Multidimensional Quality Aspect of Treated Water. In: Belkin, S. (eds) Environmental Challenges. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4369-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4369-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5878-0

  • Online ISBN: 978-94-011-4369-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics