Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 557))

  • 202 Accesses

Abstract

Heterogeneous processes play an important role in atmospheric chemistry. Both heterogeneous chemistry on polar stratospheric clouds (PSCs) and on sulfuric acid aerosols are of central importance for the depletion of stratospheric ozone. On these surfaces inactive halogen reservoir species, especially ClONO2, HCl, HOCl, BrONO2, HBr are converted into their active forms, Cl and/or Br species, which subsequently catalyse the loss of ozone. An overview is given on the types of heterogeneous reactions that occur on various surfaces (liquid or solid) in the stratosphere. Basic definitions on heterogeneous processes, relating reaction probabilities, solubilities and reactivity are described. Laboratory techniques for the measurements of the uptake coefficients are presented and the uptake coefficients for the major Cl-and Br-containing species reacting on NAT, water-ice and sulfuric acid aerosols are reviewed. Finally, heterogeneous reactions on NaCl-salts are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farman J., Gardiner, B.G., and Shanklin, J.D. (1985) Large losses of total ozone on Antarctica reveal seasonal ClOx/NOx interaction, Nature 315, 207–210.

    Article  Google Scholar 

  2. Solomon, S., Garcia, R.R., Rowland, F.S., and Wuebbles, D.J. (1986) On the depletion of Antarctic ozone, Nature 321, 755–758.

    Article  Google Scholar 

  3. Solomon, S. (1988) The mystery of the Antarctic ozone hole, Rev. Geophys 26, 131–148.

    Article  Google Scholar 

  4. WMO (1995) Scientific Assessment of Ozone Depletion: 1994, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 37, Geneva.

    Google Scholar 

  5. Solomon, S. (1990) Progress towards a quantitative understanding of Antarctic ozone depletion, Nature 347, 347–354.

    Article  Google Scholar 

  6. Hofmann, D.J., and Solomon, S. (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chicon, J. Geophys. Res 94, 5029–5041.

    Article  Google Scholar 

  7. Arnold, F., Buhrke, T., and Qiu, S. (1990) Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chicon, Nature 348, 49–50.

    Article  Google Scholar 

  8. Solomon, S., Portman, R.W., Garcia, R.R., Thomason, L.W., Poole, L.R., and McCormick, M.P. (1996) The role of aerosol variations in anthropogenic ozone depletion at northern mid-latitudes, J. Geophys. Res 101, 6713–6727.

    Article  Google Scholar 

  9. Ravishankara, A.R. (1997) Heterogeneous and multiphase chemistry in the troposphere, Science 276, 1085–1065.

    Article  Google Scholar 

  10. Finlayson-Pitts, B.J., Ezell, M.J., and Pitts, J.N. Jr. (1989) Formation of chemically active chlorine compounds by reaction of atmospheric NaCI particles with gaseous N2O5 and CIONO2 Nature 337, 241–244.

    Article  Google Scholar 

  11. Pueschel, R.F., Boering, K.A., Verma, S., Howard, S.D., Ferry, G.V., Goodman, J, Allen, D.A., and Hamill, P. (1997) Soot aerosol in the lower stratosphere: pole-to-pole-variability and contributions by aircraft, J. Geophys. Res 102, 13113–13118.

    Article  Google Scholar 

  12. Ammann, M., Kalberer, M., Jost, D.T., Tobler, L., Rössler, E., Piguet, D., Gäggerler, H.W., and Baltersperger, U. (1998) Heterogeneous production of nitrous acid on soot in polluted air masses, Nature 395, 157–160.

    Article  Google Scholar 

  13. Michelangeli, D.V., Allen, M., and Yung, Y.L. (1991) Heterogeneous reactions with NaCl in the El Chicon volcanic aerosols, Geophys. Res. Lett 18, 673–676.

    Article  Google Scholar 

  14. AGU (1989) The Airborne Antarctic Ozone Experiment (AAOE), J. Geophys. Res 94, numbers D9 and D14.

    Article  Google Scholar 

  15. EC/DG XII (1997) European Research in the stratosphere. A contribution of AESOE and SESAME to our current understanding of the ozone layer, Ed. G.T. Amanatidis.

    Google Scholar 

  16. Crutzen, P.J. (1976) The possible importance of CSO for the sulfate layer in the stratosphere, Geophys. Res. Lett 3, 73–76.

    Article  Google Scholar 

  17. Solomon, S., Portmann, R.W., Garcia, R.R., Randel, W., Wu, F., Nagatani, R., Gleason, J., Thomason, L., Poole, L.R., and McCormick, M.P. (1998) Ozone depletion at mid-latitudes: coupling of vulcanic aerosols and temperature variability to anthropogenic chlorine, Geophys. Res. Lett 25, 1871–1874.

    Article  Google Scholar 

  18. Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., and Beyer, K.D. (1993) Physical chemistry of the H2SO4/HNO3/H2O systems: implications for polar stratospheric clouds, Science 261, 1418–1423.

    Article  Google Scholar 

  19. Carlslaw, K.S., Luo, B.P., Clegg, S.L., Peter, T., Brimblecombe, P., and Crutzen, P.J. (1994) Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett 21, 2479–2482.

    Article  Google Scholar 

  20. Toon, O.B., and Tolbert, M.A. (1995) Spectroscopic evidence against nitric acid trihydrate in polar stratospheric clouds, Nature 375, 218–221.

    Article  Google Scholar 

  21. Crutzen, P.J., and Arnold, F. (1986) Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ozone hole, Nature 324, 651–655.

    Article  Google Scholar 

  22. Toon, O.B., Hamill, P., Turco, R.P., and Pinto, J. (1986) Condensation of HNO3 and HCl in the winter polar stratosphere, Geophys. Res. Lett 13, 1284–1287.

    Article  Google Scholar 

  23. Hanson, D.R., and Mauersberger, K. (1988) Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere, Geophys. Res. Lett 15, 855–858.

    Article  Google Scholar 

  24. Dye, J.E., Baumgardner, D., Gandrud, B.M., Kawa, S.R., Kelly, K.K., Loewenstein, M., Ferry, G.V., Chan, K.R., and Gary, B.L. (1992) Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation, J. Geophys. Res 97, 8015–8034.

    Article  Google Scholar 

  25. Steele, H.M., and Hamill, P. (1990) Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere, J. Aerosol Sci, 12, 517–528.

    Article  Google Scholar 

  26. Koop, T., Luo, B.P., Biermann, U.M., Crutzen, P.J., and Peter T. (1997) Freezing of HNO3/H2SO4/H2O solutions at stratospheric temperatures: nucleation statistics and experiments, J. Phys. Chem. A, 101, 1117–1133.

    Article  Google Scholar 

  27. Carlslaw, K.S., Clegg, S.L., and Brimblecombe, P. (1995) A thermodynamic model of the system HClHNO3-H2SO4-H2O including solubilities of HBr from <200 to 328 K, J. Phys. Chem 99, 11557–11574.

    Article  Google Scholar 

  28. Peter, T. (1997) Microphysics and heterogeneous chemistry of polar stratospheric clouds, Annu. Rev. Phys. Chem 48, 785–822.

    Article  Google Scholar 

  29. Worsnop, D.R., Fox, L.E., Zahniser, M.S., and Wofsy, S.C. (1993) Vapor pressures of solid hydrates of nitric acid: implications for polar stratospheric clouds, Science 259, 71–74.

    Article  Google Scholar 

  30. Zhang, R., Jayne, J.T., and Molina, M.J. (1994) Heterogeneous interactions of ClONO2 and HCl with sulfuric acid tetrahydrate: Implications for the stratosphere, J. Phys. Chem 98, 867–874.

    Article  Google Scholar 

  31. Marti, J., and Mauersberger, K. (1994) Evidence for nitric acid pentahydrate formed under stratospheric conditions, J. Phys. Chem 98, 6897–6899.

    Article  Google Scholar 

  32. Fox, L.E., Worsnop, D.R., Zahniser, M.S., and Wofsy, S.C. (1995) Metastable phases in polar stratospheric clouds, Science 267, 351–355.

    Article  Google Scholar 

  33. Turco, R., Toon, O.W., and Hamill, P. (1989) Heterogeneous physicochemistry of the polar ozone hole, J. Geophys. Res 94, 16493–16510.

    Article  Google Scholar 

  34. Molina, M.J., Tso, T.-L., Molina, L.T., and Wang, F.C.-Y. (1987) Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine, Science 238, 1253–1257.

    Article  Google Scholar 

  35. Anderson, J.G. (1995) Laboratory studies of atmospheric heterogeneous chemistry, in Progress and Problems in Atmospheric Chemistry,Adv. Ser. Phys. Chem, Vol. 3, J.B. Barker ed., Word Scientific Publ. Co, Singapore, 744–770.

    Chapter  Google Scholar 

  36. Lary, D.J., Chipperfield, M.P., Toumi, R., and Lenton, T. (1996) Heterogeneous atmospheric bromine chemistry, J. Geophys. Res 98, 1489–1504.

    Article  Google Scholar 

  37. Tie, X.X., and Brasseur, G. (1996) The importance of hetergeneous bromine chemistry in the lower stratosphere, Geophys. Res. Lett 23, 2505–2508.

    Article  Google Scholar 

  38. Solomon, S., Sanders, R.W., Carroll, M.A., and Schmeltekopf, A.L. (1989) Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica 5. Observations of the diurnal variations of BrO and OCIO, J. Geophys. Res 94, 11393–11403.

    Article  Google Scholar 

  39. Wennberg, P.O., Cohen, R.C., Stimpfle, R.M., Koplow, J.P., Anderson, J.G., Salawitch, R.J., Fahey, D.W., Woodbridge, E.L., Keim, E.R., Gao, R.S., Webster, C.R., May, R.D., Toohey, D.W., Avallone, L.M., Profitt, P.H., Loewenstein, M., Podolske, J.R., Chan, K.W., and Wofsy, S.C. (1994) Removal of stratospheric O, by radicals: in situ measurements of OH, HO„ NO„ CIO and 13rO, Science 266, 398–404.

    Article  Google Scholar 

  40. Clegg, S.L., and Brimblecombe, P. (1986) The dissociation constant and Henry’s law constant of HCI in aqueous solution, Atoros. Environ 20, 2483–2485.

    Article  Google Scholar 

  41. Watson, L.R., Van Doren, J.M., Davidovitz, P., Worsnop, D.R., Zahniser, M.S., and Kolb, C.E. (1990) Uptake of HCI molecules by aqueous sulfuric acid droplets as a function of acid concentration, J. Geophys. Res 96, 5631–5638.

    Article  Google Scholar 

  42. Kolb, C.E., Worsnop, D.R., Zahniser, M.S., Davidovits, P., Keyser, L.F., Leu, M.-T., Molina, M.J., Hansen, D.R., Ravishankara, A.R., Williams, L.R., and Tolbert, M.A. (1995) Laboratory studies of atmospheric heterogeneous chemistry, in Progress and Problems in Atmospheric Chemistry,Adv. Ser. Phys. Chem, Vol.3, J.B. Barker ed., Word Scientific Publ. Co, Singapore, 771–875.

    Chapter  Google Scholar 

  43. Hanson, D.R., Ravishankara, A.R., and Solomon, S. (1994) Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations, J. Geophys. Res 99, 3615–3629.

    Article  Google Scholar 

  44. Golden, D.M., and Williams, L.R. (1994) Heterogeneous chemistry and Kinetics, in Low-Temperature Chemistry of the Atmosphere, Ed. G.K. Moortgat, A.J. Barnes, G. Le Bras and J.R. Sodeau, Nato AS/ Series, Vol. I-21, Springer-Verlag Berlin, Heidelberg, 235–262.

    Google Scholar 

  45. Tolbert, M.A., Middlebrook, M.A., and Koehler, B.G. (1994) Spectroscopic studies of PSCs, in Low-Temperature Chemistry of the Atmosphere, Ed. G.K. Moortgat, A.J. Barnes, G. Le Bras and J.R. Sodeau, Nato AS/ Series, Vol. I -21, Springer-Verlag Berlin, Heidelberg, 329–349.

    Google Scholar 

  46. Mirabel, P., and Taleb, D. (1994) Phase diagrams, in Low-Temperature Chemistry of the Atmosphere, Ed. G.K. Moortgat, A.J. Barnes, G. Le Bras and J.R. Sodeau, Nato ASJ Series, Vol. I-21, Springer-Verlag Berlin, Heidelberg, 147–217.

    Google Scholar 

  47. Hanson, D.R., and Mauersberger, K. (1988) Solubility and equilibrium vapor pressures of HC1 dissolved in polar stratospheric cloud material: ice and the trihydrate of nitric acid, Geophys. Res. Lett 15, 1507–1510.

    Article  Google Scholar 

  48. Zhang, R., Wooldridge, P.J., Abbatt, J.P.D., and Molina, M.J. (1993) Physical Chemistry of the H2SO4/H2O binary system at low temperatures: Stratospheric implications, J. Phys. Chem 97, 7351–7358.

    Article  Google Scholar 

  49. Zhang, R., Wooldridge, P.J., and Molina, M.J. (1993) Vapor pressure measurements for the H2SO4/HNO3/H2O and H2SO4/HCl/H2O systems: incorporation of stratospheric acids into background sulfate aerosols, J. Phys. Chem 97, 8541–8548.

    Article  Google Scholar 

  50. Hanson, D.R., and Mauersberger, K. (1988) Vapor pressures of HNO3/H2O solutions at low temperature”, J. Phys. Chem 92, 6167–6170.

    Article  Google Scholar 

  51. Hanson, D.R., and Mauersberger, K. (1990) HCl/H2O solid-phase vapor presssures and HCl solubility in ice, J. Phys. Chem 94, 4700–4705.

    Article  Google Scholar 

  52. Marti, J., Mauersberger, K., and Hanson, D. (1991) HCl dissolved in solid mixtures of nitric acid and ice: implications for the polar stratosphere, Geophys. Res. Leu 18, 1861–1864.

    Article  Google Scholar 

  53. Abbatt, J.P.D., Beyer, K.D., Fucaloro, A.F., McMahon, J.R., Woolridge, P.J., Zhang, R., and Molina, M.J. (1992) Interaction of HCI vapor with water-ice: implications for the stratosphere, J. Geophys. Res 97, 15819–15825.

    Article  Google Scholar 

  54. Marti, J., and Mauersberger, K. (1993) Laboratory simulations of PSC particles formation, Geophys. Res. Lett 20, 359–362.

    Article  Google Scholar 

  55. Marti, J., and Mauersberger, K. (1993) A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K, Geophys. Res. Lett 20, 363–366.

    Article  Google Scholar 

  56. Luo, B.P., Carlslaw, K.S., Peter, T., and Clegg, S.L. (1995) Vapour pressures of H2SO4/HNO3/HC1/ HBr/H2O solutions to low stratospheric temperatures, Geophys. Res. Lett 22, 247–250.

    Article  Google Scholar 

  57. Tolbert, M.A., and Middlebrook, A.M. (1990) Fourier Transform infrared studies of model polar stratospheric cold surfaces: growth and evaporation of ice and nitric acid/ice, J. Geophys. Res 95, 22423–22431.

    Article  Google Scholar 

  58. Smith, R.H., Leu, M.T., and Keyser, L.F. (1991) Infrared spectra of solid films formed from vapors containing water and nitric acid, J. Phys. Chem 95, 5924–5930.

    Article  Google Scholar 

  59. Koehler, B.G., Middlebrook, A.M., and Tolbert, M.A. (1992) Characterisation of model polar stratospheric cloud fims using Fourier transform infrared spectroscopy and temperature programmed desorption, J. Geophys. Res 97, 8065–8074.

    Article  Google Scholar 

  60. Tolbert, M.A., (1994) Laboratory studies of heterogeneous reactions, in Low-Temperature Chemistry of the Atmosphere, Ed. G.K. Moortgat, A.J. Barnes, G. Le Bras and J.R. Sodeau, Nato ASI Series, Vol. I-21, Springer-Verlag Berlin, Heidelberg, 263–285.

    Google Scholar 

  61. Horn, A.B., Chesters, M.A., Mc Coustra, M.R.S., and Sodeau, J.R. (1992) Adsorption of stratospherically relevant molecules on D2O ice films using reflection-absorption infrared spectroscopy, J. Chem. Soc. Faraday Trans, 88, 1077–1078.

    Article  Google Scholar 

  62. Koehler, B.G., McNeil, L.S., Middlebrook, A.M., and Tolbert, M.A. (1993) Fourier transform infrared studies of the interaction of HCI with model polar stratospheric films, J. Geophys. Res 98, 10563–10571.

    Article  Google Scholar 

  63. Chu, L.T., Leu, M.T., and Keyser, L.F. (1993) Uptake of HCl in water ice and nitric acid films, J. Phys. Chem 97, 7779–7785.

    Article  Google Scholar 

  64. Keyser, L.F., Moore, S.B., and Leu, M.-T. (1991) Surface reaction and pore diffusion in flow-tube reactors, J. Phys. Chem 95, 5496–5502.

    Article  Google Scholar 

  65. Keyser, L.F., Leu, M.-T., and Moore, S.B. (1993) Comments on porosities of ice films used to simulate stratospheric cloud surfaces, J. Phys. Chem 97, 2800–2801.

    Article  Google Scholar 

  66. Quinlan, M.A., Reihs, C.M., Golden, D.G., and Tolbert, M.A. (1990) Heterogeneous reactions on model stratospheric cloud surfaces: reaction of N2O5 on ice and nitric acid trihydrate, J. Phys. Chem 94, 3255–3260.

    Article  Google Scholar 

  67. Rossi, M.J. (1996) Atmospheric pollution: the role of heterogeneous chemical reactions”, Chimia, 50, 199–208.

    Google Scholar 

  68. Howard, C. (1979) Kinetic measusrements using flow tubes, J. Phys. Chem 83, 3–9.

    Article  Google Scholar 

  69. Abbatt, J.P.D., and Molina, M.J. (1992) Heteogeneous interactions of CIONO2 and HCl on nitric acid trihydrate at 202 K, J. Phys. Chem 96, 7674–7679.

    Article  Google Scholar 

  70. Utter, R.G., Burkholder, J.B., Howard, C.J., and Ravishankara, A.R. (1992) Measurement of the mass accommodation coefficient of ozone on aqueous surface, J. Phys. Chem 96, 4973–4979.

    Article  Google Scholar 

  71. Worsnop, D.R., Zahniser, M.S., Kolb, C.E., Gardner, J.A., Watson, L.R., Van Doren, J.M., Jayne, J.T., and Davidovits, P. (1989) Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem 93, 1159–1172.

    Article  Google Scholar 

  72. Hanson, D.R., and Ravishankara, A.R. (1991) The reaction probabilities of ClONO2 and H2O on polar stratospheric cloud material, J. Geophys. Res, 96, 5081–5090.

    Article  Google Scholar 

  73. Lovejoy, E.R., and Hanson, D.R. (1995) Measurement of the kinetics of reactive uptake by submicron sulfuric acid particles, J. Phys. Chem 99, 2080–2087.

    Article  Google Scholar 

  74. Schweitzer F., Mirabel, P., and George, C. (1998) Multiphase chemistry of N2O5, CINO2, and BrNO2 J. Phys. Chem. A 102, 3942–3952.

    Article  Google Scholar 

  75. Van Doren, J.M., Watson, L.R., Davidovitz, P., Worsnop, D.R., Zahniser, M.S., and Kolb, C.E. (1991) Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets, J. Phys. Chem 95, 1684–1689.

    Article  Google Scholar 

  76. Mozurkewich, M., and Calvert, J.G. (1988) Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res 93, 15889–15896.

    Article  Google Scholar 

  77. Fried, A., Henry, B.E., Calvert, J.G., and Mozurkewich M. (1994) The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions, J. Geophys. Res 99, 3517–3532.

    Article  Google Scholar 

  78. Zetzsch, C., and Behnke, W. (1992) Heterogeneous photochemical sources of atomic Cl in the troposphere, Ber. Bunsenges. Phys. Chem 96, 488–493.

    Article  Google Scholar 

  79. Kirchner, W., Welter, F., Bongartz, A., Karnes, J., Schweighöfer, S., and Schurath, U. (1990) Trace gas exchange at the air/water interface: measurements of mass accommodation coefficients, J. Atm. Chem 10,427–449.

    Article  Google Scholar 

  80. Reihs, C.M., Golden, D.M., and Tolbert, M.A. (1990) Nitric acid uptake by sulfuric acid solutions under stratospheric conditions: Determination of Henry’s law solubility, J. Geophys. Res 95, 16545–16550.

    Article  Google Scholar 

  81. Williams, L.R., and Golden, D.M. (1993) Solubility of HC1 in sulfuric acid at stratospheric temperatures, Geophys. Res. Lett 20, 2227–2230.

    Article  Google Scholar 

  82. Hanson, D.R., and Ravishankara, A.R. (1993) Uptake of HCl and HOCl onto sulfuric acid: solubilities, diffusivities and reaction, J. Phys. Chem 97, 12309–12319.

    Article  Google Scholar 

  83. Luo, B.P., Clegg, S.L., Peter, T., Müller, R., and Crutzen, P.J. (1994) HC1 solubility and liquid diffusion in aqueous sulfuric acid under stratospheric conditions, Geophys. Res. Len 21, 49–52.

    Article  Google Scholar 

  84. Cox, R.A., MacKenzie, A.R., Müller, R.H., Peter, T., and Crutzen, P.J. (1994) Activation of stratospheric chlorine by reactions in liquid sulphuric acid, Geophys. Res. Lett 21, 1439–1442.

    Article  Google Scholar 

  85. Carlslaw, K.S., Peter, T., and Clegg, S.L. (1997) Modelling the composition of liquid stratospheric aerosols, Rev. Geophys 35, 125–154.

    Article  Google Scholar 

  86. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J. (1997) Chemical kinetics and photochemical data for use in stratospheric modelling, NASA-JPL Publication 97–4.

    Google Scholar 

  87. Wayne, R.P., Poulet, G., Biggs, P., Burrows, J.P., Cox, R.A., Crutzen, P.J., Hayman, G.D., Jenkin, M.E., Le Bras, G., Moortgat, G.K., Platt, U., and Schindler, R.N., (1995) Halogen oxides - Radicals sources and reservoirs in the laboratory and in the atmosphere, Atmos. Environ 29, 2677–2881.

    Article  Google Scholar 

  88. Atkinson R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., and Troe, J. (1997) Evaluated kinetic and photochemical data for atmospheric chemistry, Supplement V., IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref Data 26, 521–1011.

    Article  Google Scholar 

  89. Ravishankara, A.R., and Hanson, D.R. (1996) Differences in the reactivity of Type I polar stratospheric clouds depending on their phase, J. Geophys. Res, 101, 3885–3890.

    Article  Google Scholar 

  90. Hanson, D.R., and Ravishankara, A.R. (1993) Reaction of CIONO, with HCI on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric acid, J. Geophys. Res 98, 22931–22936.

    Article  Google Scholar 

  91. Oppliger, R.A., Allanic, XX, and Rossi, M.J. (1997) Real-time kinetics of the uptake of ClONO2 on ice and in the presence of HCI in the temperaturerange 160 K ≤ T ≤ 200 K, J. Phys. Chem. A 101, 1903–1911.

    Article  Google Scholar 

  92. Zhang, R., Leu, M.-T., and Keyser, L.F. (1994) Heterogeneous reactions of ClONO2 HCl and HOCl on liquid sulfuric acid surfaces, J. Phys. Chem 98, 13563–13574.

    Article  Google Scholar 

  93. Hanson, D.R., and Ravishankara, A.R. (1994) Reactive uptake of CIONO2 onto sulfuric acid due to reaction with HC1 and H2O, J. Phys. Chem, 98, 5728–5735.

    Article  Google Scholar 

  94. Barone, S.B., Zondlo, M.A., and Tolbert, M.A. (1997) A kinetic and product study of the hydrolysis of ClONO2 on Type la polar stratospheric cloud material at 185 K, J. Phys. Chem. A 101, 8643–8652.

    Article  Google Scholar 

  95. Berland, B.S., Tolbert, M.A., and George, S.M. (1997) Surface sensitive studies of the reactive uptake of chlorine nitrate on ice, J. Phys. Chem. A 101, 9954–9963.

    Article  Google Scholar 

  96. Robinson, G.N., Worsnop, D.R., Jayne, J.T., Kolb, C.E., and Davidovitz, P. (1997) Heterogeneous uptake of C1ONO2 and N2O5 by sulfuric acid solutions, J. Geophys. Res 102, 3583–3601.

    Article  Google Scholar 

  97. Donaldson, D.J., Ravishankara, A.R., and Hanson, D.R. (1997) Detailed study of HOCl + HCl → Cl, + H2O in sulfuric acid, J. Phys. Chem. A 101, 4717–4725.

    Article  Google Scholar 

  98. Hanson, D.R., and Ravishankara, A.R. (1992) Heterogeneous chemistry of HBr and HF, J. Phys. Chem 96, 9441–9446.

    Article  Google Scholar 

  99. Abbatt, J.P.D., (1994) Heterogeneous reaction of HOBr with HBr and HO on ice surfaces, Geophys. Res. Lett 21, 665–668.

    Article  Google Scholar 

  100. Hanson, D.R., and Ravishankara, A.R. (1995) Heterogeneous chemistry of bromine species in sulphuric acid under stratospheric conditions, Geophys. Res. Lett 22, 385–388.

    Article  Google Scholar 

  101. Hanson, D.R., Ravishankara, A.R., and Lovejoy, E.R. (1996) Reaction of BFONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere, J. Geophys. Res 101, 9036–9069.

    Article  Google Scholar 

  102. Robinson, G.N., Worsnop, D.R., Jayne, J.T., Kolb, C.E., Swartz, E., and Davidovitz, P. (1998) Heterogeneous uptake of HCl by sulfuric acid solutions, J. Geophys. Res 103, 25371–25381.

    Article  Google Scholar 

  103. Abbatt, J.P.D., and Nowak, J.B. (1997) Heteogeneous interactions of HBr and HOCl with cold sulfuric acid solutions: implications for Arctic boundary layer bromine chemistry, J. Phys. Chem. A 101, 2131–2137.

    Article  Google Scholar 

  104. Hanson, D.R., and Ravishankara, A.R. (1993) Reactions of halogen species on ice surfaces, in The Tropospheric Chemistry of Ozone in the Polar Regions, Ed. H. Niki and K.-H. Becker, NATO ASI Series Vol. I-17, Springer-Verlag Berlin, Heidelberg, 281–290.

    Google Scholar 

  105. Vogt, R., Crutzen, P.J., and Sander, R. (1996) A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature 383, 327–330.

    Article  Google Scholar 

  106. Livingston, F.E., and Finlayson-Pitts, B.J. (1991) The reaction of gaseous N2O5 with solid NaCl at 298K: estimated lower limit to the reaction probability and its potential role in tropospheric and stratospheric chemistry, Geophys. Res. Lett 18, 17–20.

    Article  Google Scholar 

  107. George, C., Ponche, J.L., Mirabel, P., Behnke, W., Scheer, V., and Zetzsch, C. (1994) Study of the uptake of N2O5, by water and NaC1 solutions, J. Phys. Chem 98, 8780–8784.

    Article  Google Scholar 

  108. Fenter, F.F., Caloz, F., and Rossi, M.J. (1994) Kinetics of the nitric-acid uptake by salt, J. Phys. Chem 98,9801–9810.

    Article  Google Scholar 

  109. Davies, J.A., and Cox, R. A. (1998) Kinetics of the heterogeneous reaction of HNO3 with NaCl: effect of water vapor, J. Phys. Chem. A 102, 7631–7642.

    Article  Google Scholar 

  110. Fickert, S., Helleis, F., Adams, J.W., Moortgat, G.K., and Crowley, J.N. (1998) Reactive uptake of ClNO2 on aqueous bromide solutions, J. Phys. Chem. A 102, 10689–10696.

    Article  Google Scholar 

  111. Frenzel, A., Scheer, V., Sokorski, R., George, C., Behnke, W., and Zetzsch, C. (1998) J. Phys. Chem. A 102,1329–1337.

    Article  Google Scholar 

  112. Timonen, R.S., Chu, L.T., Leu, M.-T., and Keyser, L.F. (1994) Heterogeneous reaction of ClONO2(g) + NaCI(s)→C12(g) + NaNO3 (s), J. Phys. Chem 98, 9509–9517.

    Article  Google Scholar 

  113. De Haan, D.O., and Finlayson-Pitts, B.J. (1997) Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K, J. Phys. Chem. A 101, 9993–9999.

    Article  Google Scholar 

  114. Langer, S., Pemberton, R.S., and Finlayson-Pitts, B.J. (1997) Diffuse reflectance infrared studies of the reaction of synthetic sea salt mixtures with NO2: a key role for hydrates in the kinetics and mechanism, J. Phys. Chem A 101, 1277–1286.

    Article  Google Scholar 

  115. Aumont, B., Madronich, S., Ammann, M., Kalberer, M., Baltensperger, U., Hauglustaine D., and Brocheton F. (1999) On the NO2 + soot reaction in the atmosphere, J. Geophys. Res 104, 1729–1736.

    Article  Google Scholar 

  116. Longfellow, C.A., Ravishankara, A.R., and Hanson, D.R. (1999) Reactive uptake on hydrocarbon soot: Focus on NO2, J. Geophys. Res 104, 13833–13840.

    Article  Google Scholar 

  117. Kalberer, K., Ammann, M., Arens, F., Gäggeler, H.W., and Baltensberger, U. (1999) Heterogeneous formation of nitrous acid (HONO) on soot particles, J. Geophys. Res 104, 13825–13832.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moortgat, G.K. (2000). Heterogeneous Processes in the Atmosphere. In: Zerefos, C.S., Isaksen, I.S.A., Ziomas, I. (eds) Chemistry and Radiation Changes in the Ozone Layer. NATO Science Series, vol 557. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4353-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4353-0_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6514-3

  • Online ISBN: 978-94-011-4353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics