Skip to main content

On Generalized Shannon Functional Inequality and its Applications

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 517))

Abstract

In all measures of information, the entropy f of a single event with probability p plays a fundamental role. The entropy function f, which is also known as the self information satisfies axioms of nonnegativity, additivity and maximality, that is

$$ \begin{gathered} \left( a \right)\;f\left( p \right) \geqslant 0,\quad p \in \left] {0,1} \right[, \hfill \\ \left( b \right)f\left( {pq} \right) = f\left( p \right) + f\left( q \right),\quad p,q \in \left] {0,1} \right[, \hfill \\ \left( c \right)f\left( {\tfrac{1}{2}} \right) = 1. \hfill \\ \end{gathered} $$

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aczel, On Shannon’s inequality, optimal coding, and characterizations of Shannon’s entropies. (Convegno Informatica Teoretica Ist. Naz. Alta Mat., Roma 1978), Symposia Math. 15 (1975), 153–179.

    MathSciNet  Google Scholar 

  2. J. Aczel, “Keeping the expert honest” Revisited — or: A method to prove the differentiability of solutions of functional inequalities. Selecta Statistica Canadiana 2 (1974), 1–14.

    Google Scholar 

  3. J. Aczel and Z. Daroczy, On Measures of Information and Their Characterizations. Academic Press, New York — San Francisco — London, 1975.

    MATH  Google Scholar 

  4. J. Aczel, P. Fischer and P. Kardos, General solution of an inequality containing several unknown functions with applications to generalized problem of “How to keep the expert honest”. General Inequalities 2, Proceedings of the second International Conference of General Inequalities, Oberwolfach 1978, Birkhauser Verlag, Basel, Boston, Stuttgart (1980), 441–445.

    Google Scholar 

  5. J. Aczel and A.M. Ostrowski, On the characterization of Shannon’s entropy by Shannon’s inequality. J. Austral. Math. Soc. 16 (1973), 368–374.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Aczel and J. Pfanzagal, Remarks on the measurement of subjective probability and information. Metrika 11 (1966), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.W. Brier, Verification of forecasts expressed in terms of probability. Monthly Weather Rev. (1950), 1–3.

    Google Scholar 

  8. J.M. Bernardo, Expected information as expected utility. Ann. Statist. 7 (1979), 686–690.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.J. Buehler, Measuring information and uncertainty. In V.P. Godambe and D.A. Sprott edited Foundations of Statistical Inference. Holt Rine-hart and Winston, Toronto, 1971.

    Google Scholar 

  10. B. De Finitti, Does it make sense to speak of “good probability appraisers”? In I.J. Good (Gen. Ed.) The Scientist Speculates. New York: Basic Books, 1962.

    Google Scholar 

  11. P. Fischer, On the inequality Σpif(pi) ≥ Σpif(qi). Metrika 18 (1972), 199–208.

    Article  MATH  Google Scholar 

  12. P. Fischer, On the inequality Σg(pi)f(pi) ≥ Σg(pi)f(qi). Aequationes Math. 10 (1974), 23–33.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Fischer, Sur Vinegalite. Periodica Math. Hungar. 5 (1974), 87–92

    Article  MATH  Google Scholar 

  14. P. Fischer, On some new generalizations of Shannon’s inequality. Pacific J. Math. 70 (1977), 351–359.

    MathSciNet  MATH  Google Scholar 

  15. I.J. Good, Rational Decisions. J. Roy. Statist. Soc. Ser. B 14 (1952), 107–114.

    MathSciNet  Google Scholar 

  16. PL. Kannappan and P.K. Sahoo, On a generalization of Shannon functional inequality. J. Math. Appl. 140 (1989), 341–350.

    MathSciNet  MATH  Google Scholar 

  17. PL. Kannappan and P.K. Sahoo, Kullback-Leibler distance measures between probability distributions. Jour. Math. Phy. Sci. 26 (1992), 443–454.

    MathSciNet  MATH  Google Scholar 

  18. J. McCarthy, Measures of the values of information. Proceedings of the National Academy of Sciences. (1956), 654–655.

    Google Scholar 

  19. Gy. Muszely, On continuous solutions of a functional inequality. Metrika 19 (1973), 65–69.

    Article  MathSciNet  Google Scholar 

  20. LP. Natanson, Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York, 1961.

    Google Scholar 

  21. L.J. Savage, Elicitation of personal probabilities and expectations. J. Amer. Statis. Assoc. 66 (1971), 783–801.

    Article  MathSciNet  MATH  Google Scholar 

  22. E.H. Shuford, Jr., A. Albert and H.E. Massengil, Admissible probability measurement procedures. Psychometrika 31 (1966), 125–145.

    Article  MATH  Google Scholar 

  23. C.A.S. Stael von Holstein, Assessment and evaluation of subjective probability distributions. The Economics Research Institute at the Stockholm School of Economics, Stockhold, 1970.

    Google Scholar 

  24. W. Walter, Remark on a paper by Aczel and Ostrowski. J. Austral. Math. Soc. 22A (1976), 165–166.

    Article  Google Scholar 

  25. R.J. Weber, Multiple-choice testing. In Discrete and System Models, Modules in Applied Mathematics. Edited by W.F. Lucas, F.S. Roberts, and R.M. Thrall, Springer-Verlag, New York, Heidelberg, Berlin, 1983.

    Google Scholar 

  26. R. L. Winkler, The assessment of prior distributions in Bayesian analysis. J. Amer. Statis. Assoc. 62 (1967), 776–800.

    Article  Google Scholar 

  27. R. L. Winkler, Scoring rules and the evaluation of probability assessors. J. Amer. Statis. Assoc. 64 (1969), 1073–1078.

    Article  Google Scholar 

  28. R. L. Winkler and A.H. Murphy, Nonlinear utility and the probability score. J. Applied Meterology 9 (1970), 143–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sahoo, P.K. (2000). On Generalized Shannon Functional Inequality and its Applications. In: Survey on Classical Inequalities. Mathematics and Its Applications, vol 517. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4339-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4339-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5868-1

  • Online ISBN: 978-94-011-4339-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics