Skip to main content

Local Environment in 4-Volt Cathode Materials for Li-Ion Batteries

  • Chapter
Materials for Lithium-Ion Batteries

Part of the book series: NATO Science Series ((ASHT,volume 85))

Abstract

The recent interest in developing advanced rechargeable lithium batteries such as lithium-ion type cells, has stimulated investigation on high-performance positive electrodes, the so-called four-volt cathode materials [1]. The as-preparedlithiated positive electrode materials deintercalate lithium at about 4 volts vs. Li/Li+, a very high voltage. Only three lithiated systems with high operating voltage are presently known: LiCoO2 [2] and LiNiO2 [3], with the pseudo-layered α-NaFeO2 structure, and the 3-D spinel LiMn2O4 [4]. Various substitutions on the transition metal site have been tried in these structures in order to improve the electrochemical properties; only the solid solution LiNi1-yCoyO2 leads to successful results [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohzuku, T. (1994) in G. Pistoia (ed.), Lithium Batteries, New Materials, Developments and Perspectives, Elsevier, Amsterdam, p. 239.

    Google Scholar 

  2. Mizushima, K., Jones, P.C., and Goodenough, J.B. (1980) Mater. Res. Bull. 15, 763.

    Article  Google Scholar 

  3. Broussely, M., Perton, F., Biensan, P., Bodet, J.M., Labat, J., Lecerf, A., Delmas, C., Rougier, A., and Peres, J.P. (1995) J. Power Sources 54, 109.

    Article  Google Scholar 

  4. Thackeray, M.M., Johnson, P., de Piciotto, L., Bruce, P.G., and Goodenough, J.B. (l984) Mater. Res. Bull., 19, 179.

    Article  Google Scholar 

  5. Gummow, J. and Thackeray, M.M. (1992) Solid Stale Ionics 53-56, 681.

    Article  Google Scholar 

  6. Huang, W. and Frech, R. (1996) Solid State Ionics 86-88, 395.

    Article  Google Scholar 

  7. Inaba, M., Todzuka, Y., Yoshida, H., Grincourt, Y., Tasaka, A., Tomida, Y., and Ogumi, Z. (1995) Chem. Lett. 889.

    Google Scholar 

  8. Julien, C., Massot, M., Perez-Vicente, C., Haro-Poniatowski, E., Nazri, G.A., and Rougier, A. (1998) Mater. Res. Soc. Symp. Proc. 496, 415.

    Article  Google Scholar 

  9. Rougier A., Nazri, G.A., and Julien, C. (1997) Ionics 3, 170.

    Article  Google Scholar 

  10. Nazri, M., Curtis, M.D., Yebka, B., Nazri, G.A., and Julien, C. (1998) Ext. Abstr. of the 193rd Meeting of The Electrochem. Soc., San Diego, CA, vol. 98-1, Abstr. No. 48.

    Google Scholar 

  11. Castro-Garcia, S. and Julien, C. (1998) Ionics 4, 111.

    Article  Google Scholar 

  12. Nakamoto, K. (1977) Infrared and Raman of Inorganic and Coordination Compounds, John Wiley & Sons, New York, and references herewith.

    Google Scholar 

  13. Hunter, J.C. (1981) J. Solid State Chem. 39, 142.

    Article  Google Scholar 

  14. Preudhomme, J. and Tarte, P. (1971) Spectrochim. Acta 27 A, 845.

    Google Scholar 

  15. Moore, R.K. and White, W.B. (1970) J. Am. Ceramic Soc. 53, 679.

    Article  Google Scholar 

  16. Orman, H.J. and Wiseman, P.J. (1984) Acta Cryst. C40, 12.

    Google Scholar 

  17. Julien, C., Rougier, A., Haro-Poniatowski, E., and Nazri, G.A. (1998) Mol. Cryst. Liq. Cryst. 311, 81.

    Article  Google Scholar 

  18. Exarhos, G.J. and Risen, W.N. (1972) Solid State Commun. 11, 755.

    Article  Google Scholar 

  19. Ammundsen, B., Burns, GR., Islam, M.S., Kanoh, H., and Roziere, J. (1999) J. Phys. Chem. 103, 5175.

    Article  Google Scholar 

  20. Hope, P. and Schepers, B. (1958) Z. Anorg. Allgem. Chem. 295, 233.

    Article  Google Scholar 

  21. Tarte, P. (1967) J. Inorg. Nucl. Chem. 29, 915.

    Article  Google Scholar 

  22. Delmas, C. and Saadoune, I. (1992) Solid State Ionics 53, 370.

    Article  Google Scholar 

  23. Brodsky, M.H, Lucovsky, G., Chen, M.F., and Plaskett, T.S. (1970) Phys. Rev B 2, 3303.

    Article  Google Scholar 

  24. Julien, C. and Michael, S.S. (1998) Ionics 4, 121.

    Article  Google Scholar 

  25. G.A. Nazri, A. Rougier, and K.F. Kia, Mater. Res. Soc. Symp. Proc. 453, 635 (1997).

    Article  Google Scholar 

  26. Shannon, R.D. and Prewitt, C.T. (1969) Acta Cryst. B 25, 925.

    Article  Google Scholar 

  27. Chang I.F. and Mitra S.S. (1968) Phys. Rev. 172, 924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Julien, C. (2000). Local Environment in 4-Volt Cathode Materials for Li-Ion Batteries. In: Julien, C., Stoynov, Z. (eds) Materials for Lithium-Ion Batteries. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4333-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4333-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6651-5

  • Online ISBN: 978-94-011-4333-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics