Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 559))

Abstract

With the development of two-dimensional electron gas (2DEG) substrates and submicron lithography techniques, it has become possible to fabricate mesoscopic devices with length scales smaller than the inelastic and elastic scattering lengths of electrons at cryogenic temperatures. In these ballistic devices, the wave-nature of the electron can be probed through do conductance measurements, proportional to the first-order correlation function of the wavefunction amplitude. Electron focusing, diffraction, and Aharonov-Bohm interference experiments are examples of classical optical phenomena clearly observed in mesoscopic electron systems [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. J. Beenakker and H. van Houten, Solid State Physics vol. 44, Academic Press, San Diego (1991).

    Google Scholar 

  2. R. Hanbury Brown and R. Q. Twiss, Nature 178, 1447 (1956).

    Article  ADS  Google Scholar 

  3. C. K. Hong et al., Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  Google Scholar 

  4. A. Einstein et al., Phys. Rev. 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  5. N. Bohr and L. Rosenfeld, Phys. Rev. 48, 669 (1938).

    Google Scholar 

  6. D. Bohm, Quantum Theory, Constable, London (1954).

    Google Scholar 

  7. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  8. A. Aspect et al., Phys. Rev. Lett. 47, 460 (1981).

    Article  ADS  Google Scholar 

  9. G. Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. Grangier et al., Nature 396, 537 (1998).

    Article  ADS  Google Scholar 

  11. G. Nogues et al., Nature 400, 239 (1999).

    Article  ADS  Google Scholar 

  12. D. Bouwmeester et al., Nature 390, 575 (1997).

    Article  ADS  Google Scholar 

  13. D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Furusawa et al., Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  15. M. Reznikov et al., Phys. Rev. Lett. 75, 3340 (1995).

    Article  ADS  Google Scholar 

  16. A. Kumar et al., Phys. Rev. Lett. 76, 2778 (1996).

    Article  ADS  Google Scholar 

  17. L. Saminadayar et al., Phys. Rev. Lett. 79, 2526 (1997).

    Article  ADS  Google Scholar 

  18. R. de Picciotto et al., Nature 389, 162 (1997).

    Article  ADS  Google Scholar 

  19. R. C. Liu et al., Nature 391, 263 (1998).

    Article  ADS  Google Scholar 

  20. M. Henny et al., Science 284, 296 (1999).

    Article  ADS  Google Scholar 

  21. W. D. Oliver et al., Science 284, 299 (1999).

    Article  ADS  Google Scholar 

  22. X. Maître et al., to be published in Physica E: Low Dim. Sys. and Nanostruct.

    Google Scholar 

  23. M. Michler et al., Phys. Rev. A 53, R1209 (1996).

    Article  Google Scholar 

  24. G. Burkard et al., cond-mat/9906071 (1999).

    Google Scholar 

  25. M. Büttiker, Phys. Rev. B 54, 12485 (1992).

    Article  Google Scholar 

  26. T. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).

    Article  ADS  Google Scholar 

  27. E. M. Purcell, Nature 178, 1449 (1956).

    Article  ADS  Google Scholar 

  28. R. E. Burgess, Discussions of the Faraday Society 28, 151 (1959).

    Article  Google Scholar 

  29. G. A. Rebka, Jr. et al., Nature 180, 1035 (1957).

    Article  ADS  Google Scholar 

  30. H. J. Kimble et al. Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  Google Scholar 

  31. F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).

    Article  ADS  Google Scholar 

  32. J. Kim et al., Nature 397, 500 (1999).

    Article  ADS  Google Scholar 

  33. R. C. Liu and Y. Yamamoto, Phys. Rev. B 50, 17411 (1994).

    Article  ADS  Google Scholar 

  34. J. C. Cuevas et al., Phys. Rev. Lett. 82, 4086 (1999).

    Article  ADS  Google Scholar 

  35. J. Torrès and Th. Martin, cond-mat/9906012 (1999).

    Google Scholar 

  36. A. Imamoglu and R. J. Ram, Phys. Lett. A 214, 193 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oliver, W.D., Liu, R.C., Kim, J., Maitre, X., Di Carlo, L., Yamamoto, Y. (2000). Quantum Electron Optics and its Applications. In: Kulik, I.O., EllialtioÄŸlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics