Skip to main content

Coulomb Blockade in Single Tunnel Junction Connected to Nanowire and Carbon Nanotube

  • Chapter
Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

Part of the book series: NATO Science Series ((ASIC,volume 559))

Abstract

It is well known that Coulomb blockade (CB) in single tunnel junction (STJ) system strongly depends on its external electromagnetic environment (EME), so called phase correlation theory. Tunneling electron can transfer its charging energy E c to the EME and charges on junction surface can be isolated from external phase fluctuation, only when the impedance of EME is larger than resistance quantum (R Q =h/e2 ~ 25.8 kΩ). It is quite interesting condition because of pure requirement from quantum mechanics. Here, some mesoscopic phenomena can also yield high impedance. In this work, we connect STJ directly to Ninanowire and multi-walled Carbon nanotube (MWNT). It is, for the first time, confirmed that mutual Coulomb interaction (MCI) in the Niwire and weak localization (WL) in the MWNT can play the role of high impedance EME of CB. It is also found that the CB is very sensitive to phase fluctuation of EME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Averin and K. K Likharev, in Mesoscopic Phenomena in Solids, eds. B. L. Altshuler et al., (North-Holland, 1991) p. 173;

    Chapter  Google Scholar 

  2. Single Charge Tunneling, eds. H. Grabert and M. H. Devoret, (Plenum Press, New York and London, 1991).

    Google Scholar 

  3. A. Yacoby, M. Heiblum, D. Mahalu and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).

    Article  ADS  Google Scholar 

  4. S. Tarucha, D. G. Austing and T. Honda et al., Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  5. G.-L. Ingold and Yu. V. Nazarov, in the 2nd article of Ref. 1, p.21;

    Google Scholar 

  6. M. H. Devoret, D. Esteve, H. Grabert, et al., Phys. Rev. Lett. 64, 1824 (1990).

    Article  ADS  Google Scholar 

  7. D. Routkevitch, A. Tager, J. Haruyama, et al., IEEE-ED 43, 1646 (1996);

    Article  Google Scholar 

  8. A. Tager, D. Routkevitch, J. Haruyama, et al., Future Trends in Microelectronics, eds. S. Luryi, J.M. Xu and A. Zalaysky, NATO ASI Series E-323, 171 (1996)

    Google Scholar 

  9. J. Haruyama, D. Davydov, M. Moskovits and J. M. Xu, et al., Solid-state Electronics, the proc. NPE’97, 42, 1257 (1998);

    Article  Google Scholar 

  10. D. Davydov, J. Haruyama, M. Moskovits and J. M. Xu et al., Phys. Rev. B 57, 13550 (1998);

    Article  ADS  Google Scholar 

  11. J. Haruyama, K. Hijioka, Y. Sato et al., Phys. Rev. B and Appl. Phys. Lett., submitted.

    Google Scholar 

  12. J. Haruyama, I. Takesue, K. Ohta et al., Nature, submitted; J. Li, M. Moskovits et al., Chem. Mater. 10, 1963 (1998).

    Google Scholar 

  13. Yu. V. Nazarov, Sov. Phys. JETP. 68, 561 (1989); in the 2nd article of Ref. 1, p.99.

    Google Scholar 

  14. H. R. Zeller and I. Giaever, Phys. Rev. 181, 789 (1969).

    Article  ADS  Google Scholar 

  15. A. N. Cleland, J. M. Schmidt and J. Clarke, Phys. Rev. Lett. 64, 1565 (1990).

    Article  ADS  Google Scholar 

  16. B. L. Altshuler and A. G. Aronov, in Electron-electron Interactions in Disordered Systems, eds. A. L. Efros and M. Pollak, (North-Holland, 1985);

    Google Scholar 

  17. B. L. Altshuler and A. G. Aronov, Solid State Comm. 30, 115 (1979).

    Article  ADS  Google Scholar 

  18. B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  19. Y. Imry, in Introduction to Mesoscopic Physics, (Oxford University Press, 1997);

    Google Scholar 

  20. P. W. Anderson, Phys. Rev. 109, 1492 (1958);

    Article  ADS  Google Scholar 

  21. E. Abrahams, P. W. Anderson, et al., Phys. Rev. Lett. 42, 673 (1979);

    Article  ADS  Google Scholar 

  22. S. Kobayashi, Surf. Sci. Rep., 16(1) (1992).

    Google Scholar 

  23. e.g., many mesoscopic phenomena in SWNT such as large mean free path across one SWNT, Luttinger liquid like behavior, chirality dependent electrical features, many body effect with MCI.

    Google Scholar 

  24. S. J. Tans, M. H. Devoret, C. Dekker et al., Nature 386, 474 (1997)

    Article  ADS  Google Scholar 

  25. S. J. Tans, M. H. Devoret, C. Dekker etal., Nature 394, 761 (1998).

    Article  ADS  Google Scholar 

  26. L. Langer, V. Bayot, et al., Phys. Rev. Lett. 76, 479 (1996);

    Article  ADS  Google Scholar 

  27. T.W. Ebbesen, et al., Nature 382, 54 (1996).

    Article  ADS  Google Scholar 

  28. P. Delsing, K. K. Likharev, et al., Phys. Rev. Lett. 63, 1180 (1989).

    Article  ADS  Google Scholar 

  29. X. H. Wang and K. A. Chao, Phys. Rev. B 59, 13094 (1999).

    Article  ADS  Google Scholar 

  30. A. G. Huibers and C. M. Marcus, Phys. Rev. Lett. 81, 200 (1998).

    Article  ADS  Google Scholar 

  31. Y. Imry, Abstract of this NATO conference, p. 16 (1999).

    Google Scholar 

  32. A. Bachtold, C. Strunk, et al., Nature 397, 673 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haruyama, J., Takesue, I., Sato, Y., Hijioka, K. (2000). Coulomb Blockade in Single Tunnel Junction Connected to Nanowire and Carbon Nanotube. In: Kulik, I.O., Ellialtioğlu, R. (eds) Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics. NATO Science Series, vol 559. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4327-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4327-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6626-3

  • Online ISBN: 978-94-011-4327-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics