Advertisement

Modeling the Evolution of Solar Magnetic Fields

  • K. Galsgaard
Conference paper
Part of the NATO Science Series book series (ASIC, volume 558)

Abstract

The solar atmosphere is a laboratory for studying complicated physical processes. The Magneto-Hydro-Dynamic (MHD) equations is the simplest theoretical approach that captures the complicated dynamical interaction between plasma and magnetic fields. These equations are therefore widely used for investigating the dynamical processes that takes place in the solar atmosphere. The MHD equations can also be used to provide information about the field line structure of the coronal magnetic field. Knowledge of the magnetic field topology is required before we can understand where the magnetic field tends to liberate it’s free energy. To fully understand the energy release process, magnetic reconnection and wave dissipation processes have to be understood in detail. The MHD equations can also provide information about temperature profile along loops that are heated by, both static and time depend, heating profiles. This paper gives a review of magnetic reconnection, the basic idea behind magnetic field extrapolation, and the problems related to using temperature profiles for determining the underlying heating profile. A full understanding and utilisation of all of these disciplines within solar physics MHD is required to significantly advance our knowledge of the dynamical solar corona.

Keywords

Field Line Current Sheet Solar Phys Magnetic Reconnection Solar Corona 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arber, T.D., Longbottom, A.W. and Van der Linden, R.A.M. (1999) Unstable coronal loops: Numerical simulations with predicted observational signatures, ApJ, 517 990ADSCrossRefGoogle Scholar
  2. 2.
    Aschwanden, M.J. (2000) Do EVU nanoflares account for coronal heating?, Solar Phys., in pressGoogle Scholar
  3. 3.
    Benz, A. (1994) Observations of fragmented energy release, in G.H.J. van den Oord (ed.), Procs. Utrecht Workshop “Fragmented Energy Release in Sun and Stars”, Space Sci. Rev. 68 Google Scholar
  4. 4.
    Benz, A.O. and Aschwanden, M.J. (1992) Characteristics of the impulsive phase of flares, in B. Jackson, M. Machado, Z. Svestka (eds.), Eruptive Solar Flares, Lecture Notes in Physics, Springer, 106CrossRefGoogle Scholar
  5. 5.
    Berger, M. (1985) Structure and stability of constant-a force-free fields, ApJS 59 433ADSCrossRefGoogle Scholar
  6. 6.
    Berger, M. and Field, G.B. (1984) The topological properties of magnetic helicity, J. Fluid Mech. 147 133MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Biskamp, D. (1986) Magnetic reconnection via current sheets, Phys. Fluids 29 1520ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Cook, J.W., Cheng, C.-C., Jacobs, V.L. and Antiochos, S.K. (1989) Effect of coronal elemental abundances on the radiative loss function, ApJ 338 1176ADSCrossRefGoogle Scholar
  9. 9.
    Craig, I. and Fabling, R.B. (1996) Exact solutions for steady state, spine, and fan magnetic reconnection, ApJ 462 969ADSCrossRefGoogle Scholar
  10. 10.
    Craig, I. and Fabling, R.B. (1998) Dynamical magnetic reconnection in three space dimensions: fan current solutions, Phys of Plasma 5(3), 635MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Craig, I., Fabling, R.B. and Watson, P. (1997) The power output of spine and fan magnetic reconnection solutions, ApJ 485 383ADSCrossRefGoogle Scholar
  12. 12.
    Crosby, N., Aschwanden, M.J. and Dennis, B.R. (1993) Frequency distribution and correlations of solar X-ray flare parameters, Solar Phys. 143 275ADSCrossRefGoogle Scholar
  13. 13.
    Dennis, B.R. (1985) Solar hard X-ray bursts, Solar Phys. 100, 465ADSCrossRefGoogle Scholar
  14. 14.
    Galsgaard, K. and Nordlund, A. (1996) Heating and activity of the solar corona: 1. Boundary shearing of an initially homogeneous magnetic field, J. Geophys. Res. 101, 13445ADSCrossRefGoogle Scholar
  15. 15.
    Galsgaard, K. and Nordlund, A. (1997) Heating and activity of the solar corona: 3. Dynamics of a low beta plasma with 3D null points, J. Geophys. Res. 102 231ADSCrossRefGoogle Scholar
  16. 16.
    Galsgaard, K., Priest, E.R. and Nordlund, A. (2000) Three-dimensional separator reconnection - How does it occur?, Solar Phys., in pressGoogle Scholar
  17. 17.
    Galsgaard, K., Rickard, G. and Reddy, R. (1997) Energy release sites in magnetic fields containing single or multiple nulls, Solar Phys. 176 299ADSCrossRefGoogle Scholar
  18. 18.
    Glasgaard, K. (2000) Numerical investigation of quasi separator layers, acc. for JGR Google Scholar
  19. 19.
    Goossens, M. and Ruderman, M.S., (1995) Conservation laws and connection formulae for resonant MHD waves, Physica Scripta T60 171ADSCrossRefGoogle Scholar
  20. 20.
    Green, J.M. (1989) Geometrical properties of 3D reconnecting magnetic fields with nulls, J. Geophys. Res. 93 8583ADSCrossRefGoogle Scholar
  21. 21.
    Hendrix, D.L. and Van Hoven, G. (1996) Magnetohydrodynamic turbulence and implications for solar coronal heating, ApJ 467 887ADSCrossRefGoogle Scholar
  22. 22.
    Hesse, H. and Schindler, K. (1988) A theoretical foundation of general magnetic reconnection, J. Geophys. Res. 93 5559ADSCrossRefGoogle Scholar
  23. 23.
    Heyvearts, J. and Priest, E.R. (1983) Coronal heating by phasemixed shear Alfvén waves, APIA 117 220Google Scholar
  24. 24.
    Hildner, E. (1974) The formation of solar quiescent prominences by condensation, Solar Phys. 35, 123ADSCrossRefGoogle Scholar
  25. 25.
    Hornig, G. and Rastätter, L. (1997) The magnetic structure of B ≠ 0-reconnection, Physica Scripta T74 34CrossRefGoogle Scholar
  26. 26.
    Hudson, H.S. (1991) Solar flares, microflares, nanoflares, and coronal heating, Solar Phys. 133 357ADSCrossRefGoogle Scholar
  27. 27.
    Inverarity, G.W. and Titov, V.S. (1997) Formation of current layers in three-dimensional, inhomogeneous coronal magnetic fields by photospheric motions, J. Geophys. Res. 102 22285ADSCrossRefGoogle Scholar
  28. 28.
    Ionson, J. (1978) ApJ 226 650ADSCrossRefGoogle Scholar
  29. 29.
    Kano, R. (1997) Temperature structure of quasi-steady coronal loops revealed with YOHKOH, in The Coronal and Solar Wind near Minimum Activity, Vol. 404 of ESA-SP, ESA, Nordwijkerhout, Holland, p.17Google Scholar
  30. 30.
    Kerr, R. and Brandenburg, A. (1999) Evidence for a singularity in ideal magnetohydrodynamcis: implications for fast reconnection, Phys. Rev. Lett., in pressGoogle Scholar
  31. 31.
    Krucker, S. and Benz, A. O.(1998)Energy distribution of heating processes in the quiet solar corona, ApJ 501 1213CrossRefGoogle Scholar
  32. 32.
    Lau, Y.T. and Finn, J.M. (1990) 3D kinematic reconnection in the presence of field nulls and closed field lines, ApJ 350 672MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Lee, J., White, S.M., Kundu, M.R., Mikie, Z. and Mcclymont, N.A. (1999) A test for coronal magnetic field extrapolations, ApJ 510 413ADSCrossRefGoogle Scholar
  34. 34.
    Longbottom, A.W., Rickard, G.J., Craig, L. J.D. and Sneyd, A.D. (1998) Magnetic flux braiding: force-free equilibria and current sheets, ApJ, 500 471ADSCrossRefGoogle Scholar
  35. 35.
    Longcope, D.W. and Sudan, R.N. (1994) Evolution and statistics of current sheets in coronal magnetic loops, ApJ 437 491ADSCrossRefGoogle Scholar
  36. 36.
    Mackay, D., Galsgaard, K. and Priest, E.R. (2000) How accurately can we determine the coronal heating mechanism in the large-scale solar corona ?, Solar Phys., in pressGoogle Scholar
  37. 37.
    Mackay, D.H., Gaizauskas, V., Rickard, G. and Priest, E. (1997) Force-free and potential models of a filament channel in which a filament forms, ApJ 486 534ADSCrossRefGoogle Scholar
  38. 38.
    Mackay, D.H., Longbottom, A.W. and Priest, E.R. (1999) Dipped magnetic field configurations associated with filaments and barbs, Solar Phys. 185 87ADSCrossRefGoogle Scholar
  39. 39.
    Mikic, Z., Linker, J.A., Schnack, D.D., Lionello, R and,Tarditi, A. (1999) Magneto-hydrodynamic modeling of the global solar corona, Phys. Plasma 6, no 5, 2217ADSCrossRefGoogle Scholar
  40. 40.
    Nakariakov, V., Ofman, L., DeLuca, E., Roberts, B. and Davila, J. (1999) TRACE observations of damped coronal loop oscillations: implications for coronal heating, Science 285 862ADSCrossRefGoogle Scholar
  41. 41.
    Ng, C.S. and Bhattachrjee, A. (1998) On non-equilibrium and current sheet formation in line-tied magnetic fields, Physics of Plasma 5(11), 4028ADSCrossRefGoogle Scholar
  42. 42.
    Parker, E.N. (1957) Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res. 62 509ADSCrossRefGoogle Scholar
  43. 43.
    Parker, E.N. (1972) Topological dissipation and the small-scale fields in turbulent gases, ApJ 174 499ADSCrossRefGoogle Scholar
  44. 44.
    Parnell, C.E. and Jupp, P.E. (2000) Statistical analysis of the energy distribution of nanoflares in the quiet Sun, ApJ 529 554ADSCrossRefGoogle Scholar
  45. 45.
    Parnell, C.E., Smith, J.M., Neukirch, T. and Priest, E.R. (1996) The structure of three-dimensional magnetic null points, Physics of Plasma 3 759ADSCrossRefGoogle Scholar
  46. 46.
    Priest, E. and Forbes, T. (1989) Steady magnetic reconnection in three dimensions, Solar Phys. 119 211ADSCrossRefGoogle Scholar
  47. 47.
    Priest, E. and Forbes, T. (2000) Magnetic reconnection: MHD theory and applications, Cambridge University Press, in presszbMATHCrossRefGoogle Scholar
  48. 48.
    Priest, E.R. (1984) Solar magneto hydrodynamics, D. Reidel Publ. Comp.Google Scholar
  49. 49.
    Priest, E.R. and Démoulin, P. (1995) Three-dimensional magnetic reconnection without null points 1. Basic theory of magnetic flipping, J. Geophys. Res. 100 23443ADSCrossRefGoogle Scholar
  50. 50.
    Priest, E.R., Foley, C., Heyvaerts, J., Arber, T., Culhane, J. and Acton, L. (1998) The nature of the heating mechanism for the diffuse solar corona, Nat. 393, 545Google Scholar
  51. 51.
    Priest, E.R., Lonie, D.P. and Titov, V.S. (1996) Bifurcations of magnetic topology by the creation or annihilation of null points, J. Plasma Physics 56 507ADSCrossRefGoogle Scholar
  52. 52.
    Priest, E.R. and Titov, V.S. (1996) Magnetic reconnection at three-dimensional null points, Phil. Trans R. Soc. Lond. A 354 2951MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    Rickard, G.J. and Titov, V.S. (1996) Current accumulation at a three-dimensional magnetic null, ApJ 472 840ADSCrossRefGoogle Scholar
  54. 54.
    Sakurai, T. (1989) Computational modeling of magnetic fields in solar active regions, Space Science Reviews 51 11ADSGoogle Scholar
  55. 55.
    Spitzer, L. (1962) Physics of fully ionized gases, Interscience, Interscience Google Scholar
  56. 56.
    Sweet, P.A. (1958) The neutral point theory of solar flares, in B. Lehnert (ed.), Electromagnetic Phenomena in Cosmical Physics, Cambridge Univ. Press, p.123Google Scholar
  57. 57.
    Titov, V.S., Démolin, P. and Hornig, G. (1999) Quasi-separatrix layers: refined theory and its application to solar flares, in Magnetic fields and solar processes, 9-th European Meeting on Solar Physics, Firenze, Italy, September 12–18Google Scholar
  58. 58.
    Tsinganos, K.C. (1992) The MHD description of cosmic plasmas, in J.T. Schmelz, J.C. Brown (eds.), The Sun: A laboratory for Astrophysics, NATO ASI Series C vol 373, Kluwer Academic Publishers, p.139CrossRefGoogle Scholar
  59. 59.
    Tsuneta, S. (1996) Magnetic reconnection: open issues, in B. Bentely, J. Mariska (eds.), Yohkoh Conference on Observations of Magnetic Reconnection in the Solar Atmosphere, Vol. 111, ASP Conference Proceedings, p.409Google Scholar
  60. 60.
    van Ballegooijen, A.A. (1985) Electric currents in the solar corona and the existence of magnetostatic equilibrium, ApJ 298 421ADSCrossRefGoogle Scholar
  61. 61.
    van Ballegooijen, A.A. (1998) Force free fields and coronal heatingGeophys. Astrophys. Fluid Dyn. 41 181CrossRefGoogle Scholar
  62. 62.
    Walsh, R. (1999) Modeling the thermal structure of coronal loops, in Plasma dynamics and diagnostics in the solar transition region and corona, Vol. 446 of ESA-SP, ESA, Nordwijkerhout, Holland, p.687Google Scholar
  63. 63.
    Walsh, R.W., Galsgaard, K and, Arber, T. (2000) in preparationGoogle Scholar
  64. 64.
    Withbroe, G.L. and Noyes, R.W. (1977) Mass and energy flow in the solar chromosphere and corona, ARA&A 15 363ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • K. Galsgaard
    • 1
  1. 1.Department of MathematicsUniversity of St AndrewsNorth HaughScotland

Personalised recommendations