Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 558))

Abstract

The theory of stellar structure can be used to identify the most plausible mechanisms for the irradiance variations associated with the solar cycle. Changes in surface emissivity, i.e. the reduced cooling in spots and enhanced emission by small scale magnetic fields, are the most effective mechanisms and account for most of the observed variation. Helioseismology will soon be able to test the consequences of changes in surface emissivity, and distinguish them from other scenarios for irradiance variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt, S. (1992) Astrophys. J 389, 421

    Article  ADS  Google Scholar 

  2. Bahcall, J. (1996) Astrophys. J. 467, 475

    Article  ADS  Google Scholar 

  3. Bogdan, T.J., Braun, D.C., Lites, B.W. and Thomas, J.H. (1998) Astrophys. J. 492, 379

    Article  ADS  Google Scholar 

  4. Braun, D.C. (1997) Astrophys. J. 487, 447

    Article  ADS  Google Scholar 

  5. Brun, A.S., Turck-Chièze, S. and Morel, P. (1998) Astrophys. J. 506, 913

    Article  ADS  Google Scholar 

  6. Caligari, P., Schüssler, M. and Moreno-Insertis, F. (1998) Astrophys. J. 502, 481

    Article  ADS  Google Scholar 

  7. Chiang, W.H. and Foukal, P.V (1984) Solar Phys. 97, 9

    Article  ADS  Google Scholar 

  8. D’Silva, S. and Choudhuri, A.R. (1993) Astron. Astrophys. 272, 621

    ADS  Google Scholar 

  9. D’Silva, S. and Howard, R.A. (1993) Solar Phys. 148, 1

    Article  ADS  Google Scholar 

  10. Duvall, T.L., Jr., Kosovichev, A.G., Scherrer, P.H.; Bogart, R.S., Bush, R.I., De Forest, C., Hoeksema, J.T., Schou, J., Saba, J.L.R., Tarbell, T.D., Title, A.M., Wolfson, C.J. and Milford, P.N. (1997) Sol. Phys. 170, 63

    Article  ADS  Google Scholar 

  11. Duvall, T.L., Jr., Kosovichev, A.G. and Scherrer, P.H. (1998) in Sounding solar and stellar interiors, eds. J. Provost & F -X Schmider (IAU symposium 181, Nice, France, September 30 - October 3), Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  12. Duvall, T.L., Jr. and Kosovichev, A.G. (1999) in SOHO-9 Workshop “Helioseismic Diagnostics of Solar Convection and Activity”, Stanford, California, July 12–15

    Google Scholar 

  13. Dziembowski, W.A., Goode, P.R., Di Mauro, M.P., Kosovichev, A.G. and Schou, J. (1998) Astrophys. J. 509, 456

    Article  ADS  Google Scholar 

  14. Endal, A.S., Sofia, S. and Twigg, L.W. (1985) Astrophys. J. 290, 748

    Article  ADS  Google Scholar 

  15. Foukal, P.V., Fowler, P. and Livshits, M. (1983) Astrophys. J. 267, 863

    Article  ADS  Google Scholar 

  16. Foukal, P.V. and Lean, J. (1986) Astrophys. J. 302, 826

    Article  ADS  Google Scholar 

  17. Friis-Christensen, E., Fröhlich, C., Haigh, J., Schüssler, M. and von Steiger, R. (eds.) (2000) Proceedings ISSI workshop Solar Variability and Climate, Space Sci. Rev., Kluwer, in press.

    Google Scholar 

  18. Fröhlich, C. and Lean, J. (1998) Geophys. Res. Let. 25, 4377–4380

    Article  ADS  Google Scholar 

  19. P.M. Giles, T.L. Duvall Jr., P.H. Scherrer and R.S. Bogart, (1997) Nature 390, 52–54.

    Article  ADS  Google Scholar 

  20. Gilliland, R.L. (1988) in Solar radiative output variation, P. Foukal, ed., Cambridge Research & Instrumentation Inc., Cambridge, MA 02139, 239

    Google Scholar 

  21. Goldreich, P., Murray, N., Willette, G. and Kumar, P. (1991) Astrophys. J., 370, 752

    Article  ADS  Google Scholar 

  22. Goode, P.R. and Kuhn, J.R. (1990) Astrophys. J. 356, 310

    Article  ADS  Google Scholar 

  23. Goode, P.R. and Dziembowski, W.A. (1999) in SOHO-9 Workshop “Helioseismic Diagnostics of Solar Convection and Activity”, Stanford, California, July 12–15, 1999.

    Google Scholar 

  24. Knölker, M., Grossmann-Doerth, U., Schiissler, M. and Weisshaar, E. (1991) Adv. Space Res. 11, 285

    Article  ADS  Google Scholar 

  25. Kosovichev, A.G. (1996) Astrophys. J. 461, L55

    Article  ADS  Google Scholar 

  26. Kosovichev, A.G. and Schou, J. (1997) Astrophys. J. 482, L207

    Article  ADS  Google Scholar 

  27. Kuhn, J.R., Libbrecht, K.G. and Dicke, R.H. (1988) Science 242, 908

    ADS  Google Scholar 

  28. Kuhn, J.R. and Stein, R.F. (1996) Astrophys. J. 463, L117

    Article  ADS  Google Scholar 

  29. Lean, J.L., Cook, J., Marquette, W. and Johanneson, A. (1998) Astrophys. J. 492, 390

    Article  ADS  Google Scholar 

  30. Libbrecht, K.G. and Woodard, M.F. (1990) Nature 345, 779

    Article  ADS  Google Scholar 

  31. Ludwig, H.-G., Freytag, B. and Steffen, M. (1999) Astron. Astrophys. 346, 111

    ADS  Google Scholar 

  32. Macris, C.J. and Roesch, J. (1983) Comptes Rendus, ser II, 296, 265

    ADS  Google Scholar 

  33. Muller, R. (1986) Solar Phys., 119, 229

    Article  ADS  Google Scholar 

  34. Muller, R. and Roudier, T. (1984) in The Hydromagnetics of the Sun, ESA SP ESA SP 220, p. 51

    Google Scholar 

  35. Nesme-Ribes, E. (ed.) (1994) The solar engine and its influence on terrestrial atmosphere and climate, NATO ASI 125, Kluwer

    Book  Google Scholar 

  36. Nordlund, A. (1982) Astron. Astrophys. 107, 1

    ADS  MATH  Google Scholar 

  37. Nordlund, A. (1985a) in Small scale dynamical processes in quiet stellar atmospheres ed. W. Keil, Sacramento Peak Observatory, Sunspot, NM 88349, USA

    Google Scholar 

  38. Nordlund, A. (1985b) in Progress in stellar spectral line formation theory, eds. J.E. Beckman & L. Crivellari (NATO ASI series 152), Reidel, Dordrecht, p. 215

    Google Scholar 

  39. Nordlund, A. (1986) Solar Phys., 100, 209

    Article  ADS  Google Scholar 

  40. Nordlund, A. (1991) in Stellar atmosphere: Beyond classical models, eds. L. Crivellari, I. Hubeny & D.G. Hummer (NATO ASI series 341), Kluwer, Dordrecht, p. 61

    Google Scholar 

  41. Nordlund, A. and Dravins, D. (1990) Astron. Astrophys. 228, 155

    ADS  Google Scholar 

  42. Nordlund, A. and Stein, R.F. (1990) Comp. Phys. Comm. 59, 119

    Article  ADS  MATH  Google Scholar 

  43. Nordlund, A. and Stein, R.F. (1991) in Stellar atmospheres: beyond classical models, eds. L.Crivellari, I. Hubeny & D.G.Hummer (NATO ASI series 341), Kluwer, Dordrecht, 263

    Google Scholar 

  44. Nordlund, A. and Stein, R.F. (1996) in Proceedings of the 32nd Liège Int. Astrophys. Colloquium ‘Stellar Evolution: What should be done’, eds. A. Noels et al., 75

    Google Scholar 

  45. Richard, O., Vauclair, S., Charbonnel, C. and Dziembowski, W.A. (1996) Astron. Astrophys. 312, 1000

    ADS  Google Scholar 

  46. Rast, M.P., Fox, P.A., Lin, H., Lites, B.W., Meisner, R.W. and White, O.R., Nature 401, 678

    Google Scholar 

  47. Solanki, S.K. and Unruh, Y.C. (1998) Astron. Astrophys. 329, 747

    ADS  Google Scholar 

  48. Spruit, H.C. (1976) Solar Phys. 50, 269

    Article  ADS  Google Scholar 

  49. Spruit, H.C. (1977) Solar Phys. 55, 3

    Article  ADS  Google Scholar 

  50. Spruit, H.C. (1982a) Astron. Astrophys. 108, 348

    ADS  Google Scholar 

  51. Spruit, H.C. (1982b) Astron. Astrophys. 108, 356

    ADS  Google Scholar 

  52. Spruit, H.C. (1991) in The Sun in Time, eds. C. Sonett, M. Giampapa & M.S. Matthews, University of Arizona Press, Tucson, 118

    Google Scholar 

  53. Spruit, H.C. (1992) in Sunspots: Theory and Observations, eds. J.H. Thomas and N.O. Weiss, Cambridge: CUP, 163

    Google Scholar 

  54. Spruit, H.C. (1997) Mem. Soc. Astron. It., 68, No. 2, 397

    ADS  Google Scholar 

  55. Spruit, H.C. and Weiss, A. (1986) Astron. Astrophys. 166, 167

    ADS  Google Scholar 

  56. Steffen, M., Ludwig, H.-G. and Kriiss, A. (1989) Astron. Astrophys. 213, 317

    ADS  Google Scholar 

  57. Steffen, M. (1993) in Inside the stars (IAU Coll 137), eds. W. Weiss & A. Baglin, Astron. Soc. Pac. Conference series 40, 300

    Google Scholar 

  58. Stein, R.F. and Nordlund, A (1989) Astrophys. J. 342, L95

    Article  ADS  Google Scholar 

  59. Stein, R.F. and Nordlund, A. (1991) in Challenges to Theories of the Structure of Moderate-Mass Stars, eds. D.O. Gough & J. Toomre, Lecture Notes in Physics 388, Springer, Berlin, 195

    Google Scholar 

  60. Stein, R. F. and Nordlund, A. (1998) Astrophys. J. 499, 914

    Article  ADS  Google Scholar 

  61. Steiner, O., Grossmann-Doerth, U., Knoelker, M. and Schüssler, M. (1998) Astrophys. J. 495, 468

    Article  ADS  Google Scholar 

  62. Topka, K.P., Tarbell, T.D. and Title, A.M. (1997) Astrophys. J. 484, 479

    Article  ADS  Google Scholar 

  63. Title, A.M., Topka, K.P., Tarbell, T.D., Schmidt, W., Balke, C. and Scharmer, G. (1992) Astrophys. J. 393, 782

    Article  ADS  Google Scholar 

  64. Ulrich, R.K., in New eyes to see inside the Sun, F. Deubner et al., eds. (1997) IAU Symposium 185, 59

    Google Scholar 

  65. Unruh, Y.C., Solanki, S.K. and Fligge, M. (1999) Astron. Astrophys. 345, 635

    ADS  Google Scholar 

  66. Woodard, M.F., Libbrecht, K.G., Kuhn, J.R. and Murray, N. (1991) Astrophys. J. 373, L81

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Spruit, H.C. (2000). Theory of Solar Luminosity Variations. In: Zahn, JP., Stavinschi, M. (eds) Advances in Solar Research at Eclipses from Ground and from Space. NATO Science Series, vol 558. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4325-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4325-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6624-9

  • Online ISBN: 978-94-011-4325-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics