Advertisement

What we Know about the Solar Interior

  • J.-P. Zahn
Conference paper
Part of the NATO Science Series book series (ASIC, volume 558)

Abstract

Because the interior of the Sun is opaque to electromagnetic waves, the radiation we receive from it on Earth is emitted in the outermost layers: the photosphere. Therefore our knowledge of the solar interior is based solely on theoretical models, which are built by making some plausible assumptions about the physical conditions and processes that are likely to prevail there. Fortunately, a powerful technique - helioseismology - has been developed in the last twenty years, which permits to probe directly the solar interior by means of acoustic waves, and this had a tremendous impact on solar physics because it provides tight observational constraints on our models. We shall illustrate this here by a few examples of recent advances in modeling the Sun.

Keywords

Convection Zone Differential Rotation Meridional Circulation Radiation Zone Convective Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antia, H.M. and Basu, S. (1997) Effect of turbulent pressure on solar oscillation frequencies, Proc. SCORe’96; ed. F.P. Pijpers, J. Christensen-Dalsgaard and C.S. Rosenthal, Kluwer Acad. Publ., Astrophys. Space Sci. Library 225, 51Google Scholar
  2. 2.
    Antia, H.M., Basu, S. and Chitre, S.M. (1998) Solar internal rotation rate and the latitudinal variation of the tachocline, Mon. Not. Roy. Astron. Soc. 298, 534ADSCrossRefGoogle Scholar
  3. 3.
    Antia, H.M. and Chitre, S.M. (1998) Determination of temperature and chemical composition profiles in the solar interior from seismic models, Astron. Astrophys. 339, 239ADSGoogle Scholar
  4. 4.
    Balachandran, S. and Bell, R.A. (1997) The “Missing UV opacity” and the solar beryllium abundance, American Astron. Soc. Meeting 191 #74.08ADSGoogle Scholar
  5. 5.
    Bernkopf, J. (1998) Unified stellar models and convection in cool stars, Astron. Astrophys. 332, 127ADSGoogle Scholar
  6. 6.
    Brandenburg, A., Jennings, R.L., Nordlund, A, Rieutord, M., Stein, R. F. and Tuominen, I. (1996) Magnetic structures in a dynamo simulation, J. Fluid Mech. 306, 325MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A. (1989). Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings, Astrophys. J. 343, 526ADSCrossRefGoogle Scholar
  8. 8.
    Brummell, N.H., Hurlburt, N.E. and Toomre, J. (1996) Turbulent compressible convection with rotation. I. Flow structure and evolution, Astrophys. J. 473, 494ADSCrossRefGoogle Scholar
  9. 9.
    Brummell, N.H., Hurlburt, N.E. and Toomre, J. (1998) Turbulent compressible convection with rotation. II. Mean flows and differential rotation, Astrophys. J. 493, 955ADSCrossRefGoogle Scholar
  10. 10.
    Brun, A.S., Turck-Chièze, S. and Morel, P. (1998) Standard solar models in the light of new helioseismic constraints. I. The solar core, Astrophys. J. 506, 913ADSCrossRefGoogle Scholar
  11. 11.
    Brun, A.S., Turck-Chièze, S. and Zahn, J.-P. (1999) Standard solar models in the light of new helioseismic constraints. II. Mixing below the convection zone, Astrophys. J. 525, 1032ADSCrossRefGoogle Scholar
  12. 12.
    Canuto, V.M., Goldman, I. and Mazzitelli, I. (1996) Stellar turbulent convection: a self-consistent model, Astrophys. J. 473, 550ADSCrossRefGoogle Scholar
  13. 13.
    Chaboyer, B. and Zahn, J.-P. (1992) Effect of horizontal turbulent diffusion on the transport by meridional circulation, Astron. Astrophys. 253, 173ADSzbMATHGoogle Scholar
  14. 14.
    Corbard, T., Blanc-Féraud, L., Berthomieu, G. and Provost, J. (1999) Non linear regularization for helioseismic inversions. Application for the study of the solar tachocline, Astron. Astrophys. 344, 696ADSGoogle Scholar
  15. 15.
    Donahue, R.A., Saar, S.H. and Baliunas, S.L. (1996) A relationship between mean rotation period in lower main-sequence stars and its observed range, Astrophys. J. 466, 384ADSCrossRefGoogle Scholar
  16. 16.
    Dorch, B. (1998) Thesis, http://www.astro.ku.dk/ -dorch
  17. 17.
    D’Silva, S., Duvall, T.L. Jr., Jefferies, S.M. and Harvey, J.W. (1996) Helioseismic tomography, Astrophys. J. 471, 1030ADSCrossRefGoogle Scholar
  18. 18.
    Eddington, A.S. (1925) Circulating currents in rotating stars, Observatory 48, 73ADSGoogle Scholar
  19. 19.
    Elliott, J.R. (1997) Aspects of the solar tachocline, Astron. Astrophys. 327, 1222ADSGoogle Scholar
  20. 20.
    Elliott, J.R., Miesch, M. and Toomre, J. (1999) Large-eddy simulations of turbulent solar convection and its coupling with rotation, Proc. SOHO-9 workshop, 54Google Scholar
  21. 21.
    Freytag, B., Ludwig, H.-G. and Steffen, M. (1996) Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun, Astron. Astrophys. 313, 497ADSGoogle Scholar
  22. 22.
    Georgobiani, D., Kosovichev, A. G., Nigam, R., Nordlund, A. and Stein, R. F. (2000) Numerical simulations of oscillation modes of the solar convection zone, Astrophys. J. 530, 139ADSCrossRefGoogle Scholar
  23. 23.
    Gough, D.O. and McIntyre, M.E. (1998) Inevitability of a magnetic field in the Sun’s radiative interior, Nature 394, 755ADSCrossRefGoogle Scholar
  24. 24.
    Grevesse, N. and Sauval, A.J. (1998) Standard solar composition, Space Sci. Rev. 85, 161ADSCrossRefGoogle Scholar
  25. 25.
    Howard, L.N., Moore, D.W. and Spiegel, E.A. (1967) Solar spin-down problem, Nature 214, 1297ADSCrossRefGoogle Scholar
  26. 26.
    Kiraga, M., Zahn, J.-P., Stepien, K., Jahn, K., Rózyczka, M. and Muthsam, H.J. (1999) Hydrodynamical simulations of penetrative convection and generation of internal gravity waves, ASP Conf. Ser. 173, 269ADSGoogle Scholar
  27. 27.
    Kumar, P. and Quataert, E. (1997) Angular momentum transport by gravity waves and its effect on the rotation of the solar interior, Astrophys. J. 493, 412ADSCrossRefGoogle Scholar
  28. 28.
    Kumar, P., Talon, S. and Zahn, J.-P. (1999) Angular momentum redistribution by waves in the Sun, Astrophys. J. 520, 859ADSCrossRefGoogle Scholar
  29. 29.
    Ludwig, H.-G., Freytag, B. and Steffen, M. (1999) A calibration of the mixing-length for solar-type stars based on hydrodynamical simulations. I. Methodical aspects and results for solar metallicity, Astron. Astrophys. 346, 111ADSGoogle Scholar
  30. 30.
    Maeder, A. and Zahn, J.-P. (1998) Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity, Astron. Astrophys. 334, 1000ADSGoogle Scholar
  31. 31.
    Matias, J. and Zahn, J.-P. (1997) The internal rotation of the Sun, IAU Symposium 181, poster volume (ed. G. Berthomieu and F.-X. Schmieder)Google Scholar
  32. 32.
    Mestel, L. (1953) Rotation and stellar evolution, Mon. Not. Roy. Astron. Soc. 113, 716ADSzbMATHGoogle Scholar
  33. 33.
    Morel, P. and Schatzman, E. (1996) Diffusion near the solar core, Astron. Astrophys. 310, 982ADSGoogle Scholar
  34. 34.
    Nordlund, A. and Stein, R.F. (1998) The excitation and damping of p-modes, Proc. IAU Symp. 185: New Eyes to See Inside the Sun and Stars; ed. F.-L. Deubner, J. Christensen-Dalsgaard and D. Kurt, 199Google Scholar
  35. 35.
    Press, W. H. (1981) Radiative and other effects from internal waves in solar and stellar interiors, Astrophys. J. 245, 286MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Rieutord, M. and Zahn, J.-P. (1995) Turbulent plumes in stellar convective envelopes, Astron. Astrophys. 296, 127ADSGoogle Scholar
  37. 37.
    Skumanich, A. (1972) Time scales for Call emission decay, rotational braking, and Lithium depletion, Astrophys. J. 171, 565ADSCrossRefGoogle Scholar
  38. 38.
    Spiegel, E.A. and Zahn, J.-P. (1992) The solar tachocline, Astron. Astrophys. 279, 431Google Scholar
  39. 39.
    Stein, R.F. and Nordlund, A. (1998) Simulations of solar granulation. I. General properties, Astrophys. J. 499, 914ADSCrossRefGoogle Scholar
  40. 40.
    Sweet, P.A. (1950) The importance of rotation in stellar evolution, Mon. Not. Roy. Astron. Soc. 110, 548MathSciNetADSzbMATHGoogle Scholar
  41. 41.
    Talon, S. and Zahn, J.-P. (1997) Anisotropic diffusion and shear instabilities, Astron. Astrophys. 317, 749ADSGoogle Scholar
  42. 42.
    Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J. (1998) Pumping of magnetic fields by turbulent penetrative convection, Astrophys. J. 502, 177ADSCrossRefGoogle Scholar
  43. 43.
    Ventura, P., Zeppieri, A., Mazzitelli, I. and D’Antona, F. (1998) Pre-main sequence lithium burning: the quest for a new structural parameter, Astron. Astrophys. 331, 1011ADSGoogle Scholar
  44. 44.
    Vitense, E. (1953) Die Wasserstoffkonvektionzone der Sonne, Zeitschrift f. Astrophys. 32, 135ADSGoogle Scholar
  45. 45.
    Vogt, H. (1925) Zum Strahlungsgleichgewicht der Sterne, Astron. Nachr. 223, 229ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Watson, M. (1981) Shear instability of differential rotation in stars, Geophys. Astrophys. Fluid Dynam. 16, 285ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Zahn, J.-P. (1992) Circulation and turbulence in rotating stars, Astron. Astrophys. 265, 115ADSGoogle Scholar
  48. 48.
    Zahn, J.-P., Talon, S. and Matias, J. (1997) Angular momentum transport by internal waves in the solar interior, Astron. Astrophys. 322, 320ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • J.-P. Zahn
    • 1
  1. 1.Observatoire de ParisMeudonFrance

Personalised recommendations