Advertisement

Sounding the Solar Interior

  • W. A. Dziembowski
Conference paper
Part of the NATO Science Series book series (ASIC, volume 558)

Abstract

Serious research on the solar internal structure began in the second half of nineteenth century. Attempts were made to asses physical parameters in the interior and, first of all, to explain the source of the energy radiated by the Sun. Already sir Arthur Eddington in his The internal constitution of the stars published in 1926 presents the hypothesis that the energy is liberated in building up helium nucleus from four protons, as most plausible explanation. By early 1940ies, mostly thanks to works of Hans Bethe, the basic chains of nuclear reactions leading to formation of helium nuclear reactions were known. At this time all basic physics needed to construct models of the Sun’s interior became available. However, important improvements are being introduced to these days.

Keywords

Convective Zone Solar Model Michelson Doppler Imager Solar Interior Helium Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basu, S., Antia, H.M. and Tripathy, S.C. (1998) Ring diagram analysis of the velocity fields within the solar convective zone, in Structure and dynamics of the Sun and Sun-like stars, Proc. SOHO 6/GONG 98 Workshop,eds. Korzennik, S.G. and Wilson, A., (ESA: Nordwijk), 705–710Google Scholar
  2. 2.
    Bogdan, T.J. (1997) A comment on the relationship between the modal and time-distance formulations of the local helioseismology, Astrophys. J. 477, 475–484ADSCrossRefGoogle Scholar
  3. 3.
    Brodsky, M.Y. and Vorontsov, S.V. (1988) On the technique of the inversion of helioseismological data, in IA U Symposium No 123, Advances in helio-and asteroseismology eds. Christensen-Dalsgaard, J. and Frandsen, S., (Reidel: Dordrecht), 137–140Google Scholar
  4. 4.
    Brown, T.M. and Morrow, C.A. (1987) The depth and latitude dependence of solar rotation, Astrophys. J. 314, L21–L26ADSCrossRefGoogle Scholar
  5. 5.
    Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W.A. and Guzik, J.A. (1999), Introduction to helioseismology, in Variable Stars as Essential Astrophysical Tool, ed. Ibanglu, (Kluver), 00–00Google Scholar
  6. 6.
    Christensen-Dalsgaard, J., Duvall, T.L., Gough, D.O., Harvey, J.W. and Rhodes, E.J. (1985) Speed of sound in the solar interior, Nature 315, 378–382ADSCrossRefGoogle Scholar
  7. 7.
    Christensen-Dalsgaard, J., Gough, D.O. and Thompson, M.J. (1989) Differential asymptotic sound-speed inversions, Mon. Not. Roy. Astr. Soc. 238, 481–502ADSGoogle Scholar
  8. 8.
    Christensen-Dalsgaard, J., Gough, D.O. and Thompson, M.J. (1991) The depth of the solar convective zone, Astrophys. J. 378, 413–437ADSCrossRefGoogle Scholar
  9. 9.
    Christensen-Dalsgaard, J., Proffitt and Thompson, M.J. (1993) Effects of diffusion on solar models and their oscillation frequencies, Astrophys. J. 403, L75–L78ADSCrossRefGoogle Scholar
  10. 10.
    Christensen-Dalsgaard, J. et al. (1996), The current state of solar modeling, Science 272, 1286–1292ADSCrossRefGoogle Scholar
  11. 11.
    Claverie, A., Isaak, G.R., McLeod, C.P., van der Raay, H.B„ and Roca Cortes, T. (1979) Solar structure from global studies of the 5-minute oscillations, Nature 282, 591–594ADSCrossRefGoogle Scholar
  12. 12.
    Deubner, F.-L. (1975) Observations of low wavenumber nonradial eigenmodes of the Sun, Astron. Astrophys. 72, 371–375ADSGoogle Scholar
  13. 13.
    Dicke, R.H. and Goldenberg, H.M. (1967) Solar oblateness and general relativity, Phys. Rev. Lett. 18, 313–316ADSCrossRefGoogle Scholar
  14. 14.
    DiMauro, M.P., Dziembowski, W.A. and Paternó, (1998) Rotation in the solar interior: new results by helioseismic data inversion, in Structure and dynamics of the Sun and Sun-like stars, Proc. SOHO 6/GONG 98 Workshop, eds. Korzennik, S.G. and Wilson, A., (ESA: Nordwijk), 759–762Google Scholar
  15. 15.
    Duvall, T.L. (1982) A dispersion law for solar oscillations, Nature 300, 242–243ADSCrossRefGoogle Scholar
  16. 16.
    Duvall, T.L., Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W. and Leibacher, J. (1984) The internal rotation of the Sun, Nature 310, 22–25ADSCrossRefGoogle Scholar
  17. 17.
    Duvall, T.L. and Harvey (1984) Rotational frequency splitting of solar oscillations, Nature 310, 19–22ADSCrossRefGoogle Scholar
  18. 18.
    Duvall, T.L., Harvey, J.W. and Pomerantz, M.A. (1986) Latitude and depth variation of solar rotation of the Sun, Nature 321, 500–501ADSCrossRefGoogle Scholar
  19. 19.
    Duvall, T.L. et al. (1997), Time-distance helioseismology with the MDI instrument: initial results, Solar Phys. 170, 63–73ADSCrossRefGoogle Scholar
  20. 20.
    Dziembowski, W.A., Pamyatnykh, A.A. and Sienkiewicz, R. (1990) Solar model from helioseismology and the neutrino flux problem, Mon. Not. Roy. Astr. Soc. 244, 542–550ADSGoogle Scholar
  21. 21.
    Dziembowski, W.A., Pamyatnykh, A.A. and Sienkiewicz, R. (1991)Helium content in the solar convective zone from helioseismology, Mon. Not. Roy. Astr. Soc. 249, 602–605ADSGoogle Scholar
  22. 22.
    Gilman, P.A., Morrow, C.A. and DeLuca, E.E. (1989) Angular momentum transport and dynamo action in the Sun: implications from recent oscillation measurements, Astrophys. J. 338, 528–537ADSCrossRefGoogle Scholar
  23. 23.
    Giles, P.M., Duvall, T.L., Scherrer, P.H. and Bogart, R.S. (1997) A subphotospheric flow from the Sun’s equator to its pole, Nature 390, 52–54ADSCrossRefGoogle Scholar
  24. 24.
    Gough, D.O. (1984) Toward solar model, Mem. Soc. Astron. Ital. 55, 13–35ADSGoogle Scholar
  25. 25.
    Grec, G., Fossat, E. and Pomerantz (1980) Solar oscillations: full disk observations from the geographic South Pole, Nature 288, 541–544ADSCrossRefGoogle Scholar
  26. 26.
    Kosovichev, A.G. (1996a) Helioseismic constraints on the gradient of the angular velocity at the base of the solar convective zone, Astrophys. J. 469, L61–L64ADSCrossRefGoogle Scholar
  27. 27.
    Kosovichev, A.G. (1996b) Tomographic imaging of the Sun’s interior, Astrophys. J. 471, L55–L57ADSGoogle Scholar
  28. 28.
    Leighton, R.B., Noyes, R.W. and Simon, G.W. (1962) Velocity fields in the solar photosphere I. Preliminary report, Astrophys. J. 135, 474–499ADSCrossRefGoogle Scholar
  29. 29.
    Libbrecht, K.G. (1988) Solar p-mode phenomenology, Astrophys. J. 334, 510–516ADSCrossRefGoogle Scholar
  30. 30.
    Libbrecht, K.G. (1989) Solar p-mode frequency splitting, Astrophys. J. 336, 1092–1097ADSCrossRefGoogle Scholar
  31. 31.
    Pijpers, F. P. (1997) Solar rotation inversions and relationships between a-coefficients and mode splittings, Astron. Astrophys. 326, 1235–1240ADSGoogle Scholar
  32. 32.
    Pijpers, F. P. and Thompson (1992) Faster formulation of the optimally localized averages method for helioseismic inversions, Astron. Astrophys. 262, L33–L36ADSGoogle Scholar
  33. 33.
    Rhodes, E.J., Kosovichev, A.G., Schou, J., Sherrer, P.H. and Reiter, J. (1997) Measurements of frequencies of solar oscillations from the MDI medium-i program, Solar Phys. 175, 287–310ADSCrossRefGoogle Scholar
  34. 34.
    Ritzwoller, M.H. and Lavely, E.M. (1991) A unified approach to helioseismic forward problem, Astrophys. J., 369, 557–566ADSCrossRefGoogle Scholar
  35. 35.
    Rudiger, G. (1989) Differential Rotation and Stellar Convection. Academie-Verlag, Berlin.Google Scholar
  36. 36.
    Schou, J., Christensen-Dalsgaard, J. and Thompson, M.J. (1994) On comparing helioseismic inversion methods, Astrophys. J. 433, 389–416ADSCrossRefGoogle Scholar
  37. 37.
    Schou, J. et al. (1998) helioseismic studies of differential rotation in the solar envelope by the Solar Oscillation investigation using Michelson Doppler Imager, Astrophys. J. 505, 390–417ADSCrossRefGoogle Scholar
  38. 38.
    Schou, J., Kosovichev, A.G., Goode, P.R. and Dziembowski, W. A. (1997) Determination of the Sun’s seismic radius from the SOHO Michelson Doppler Imager, Astrophys. J. 489, L197–L200ADSCrossRefGoogle Scholar
  39. 39.
    Spiegel, E. A. and Zahn, J.-P. (1992) The solar tachocline, Astrophys. J. 489, L197–L200Google Scholar
  40. 40.
    Tripathy, S.C. Basu and Christensen-Dalsgaard, J.(1998), Helioseismic determination of opacity corrections, in IA U Symposium, Sounding Solar and Stellar Interiors (poster volume), eds. Provost, J. and Schmider, F.X., (Université de Nice), 129–130.Google Scholar
  41. 41.
    Ulrich, R.K. (1970) The five-minute oscillations on the solar surface, Astrophys. J. 162, 993–1001ADSCrossRefGoogle Scholar
  42. 42.
    Vorontsov, S.V., Baturin, V.A. and Pamyatnykh, A. (1991) Seismological measurement of the solar helium abundance, Nature 349, 49–51ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • W. A. Dziembowski
    • 1
    • 2
  1. 1.Warsaw University ObservatoryWarszawaPoland
  2. 2.Copernicus Astronomical CenterPolish Academy of SciencesWarszawaPoland

Personalised recommendations