Models of the Solar Atmosphere

  • P. Heinzel
Conference paper
Part of the NATO Science Series book series (ASIC, volume 558)


Among the atmospheres of different stars, the solar atmosphere has a privilege to provide us an insight into various structural patterns and their dynamical behaviour. While most of stellar atmospheres are simply modelled as one-dimensional (1D) plane-parallel or spherically-symmetrical layer, the solar atmosphere must generally be resolved into various brightness components which also exhibit quite different behaviour. Therefore, a single solar atmospheric model cannot in general be treated as horizontally homogeneous, although historically this was the first step in modelling. While many stars have just the photospheres, the Sun - like some other stars - possesses also the chromosphere and the corona. The coronal temperatures reach millions degrees within very narrow chromosphere-corona transition region (CCTR) where steep temperature gradients allow an efficient heat conduction down to the lower layers of CCTR. The presence of these external layers largely complicates the solar atmospheric modelling at least for two reasons. First, due to their low density, strong departures from local thermodynamic equilibrium (LTE) exist. This is the principal problem which requires much more complicated so-called NLTE (or non-LTE) treatment of the radiative transfer. In fact, the solar atmosphere served as a ‘test laboratory’ for a development of basic concepts of NLTE theory in late fifties and early sixties (see [2]).


Solar Atmosphere Local Thermodynamic Equilibrium Stellar Atmosphere Ambipolar Diffusion Semiempirical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mihalas, D. (1991) in Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, D.G. Hummer, NATO ASI Ser., Vol. 341 127.Google Scholar
  2. 2.
    Thomas, R. and Athay, R. (1964) Physics of the Solar Chromosphere, Interscience, New York.Google Scholar
  3. 3.
    Auer, L., Fabiani Bendicho P. and Trujillo Bueno, J. (1994) Astron. Astrophys. 292 599.ADSGoogle Scholar
  4. 4.
    Stenflo, J.O. (1994) Solar Magnetic Fields (Polarized Radiation Diagnostics), Kluwer Academic Publishers, Dordrecht.Google Scholar
  5. 5.
    Mihalas, D. and Mihalas, B.W. (1984) Foundations of Radiation Hydrodynamics, Oxford University Press, New York (1999 - second edition).zbMATHGoogle Scholar
  6. 6.
    Mihalas, D. (1978) Stellar Atmospheres, W.H. Freeman and Co., San Francisco.Google Scholar
  7. 7.
    Kuin, N.P.M. and Poland, A.I. (1991) Astrophys J. 370 763.ADSCrossRefGoogle Scholar
  8. 8.
    Hubeny, I. and Heinzel, P. (1984) J. Quant. Spectrosc. Radiat. Transfer 32 159.ADSCrossRefGoogle Scholar
  9. 9.
    Hubeny, I. (1985) in Progress in Stellar Spectral Line Formation Theory, Eds. J.E. Beckman and L. Crivellari, NATO ASI Series, Vol. 152 27.Google Scholar
  10. 10.
    Oxenius, J. (1986) Kinetic Theory of Particles and Photons: Theoretical Foundations of Non-LTE Plasma Spectroscopy, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. 11.
    Hubeny, I. (1992) in The Atmospheres of Early-Type Stars, Eds. U. Heber and C.J. Jeffery, Lecture Notes in Physics 401 Springer-Verlag, Berlin.Google Scholar
  12. 12.
    Rybicki, G.B. and Hummer, D.G. (1991) Astron. Astrophys. 245 171.ADSGoogle Scholar
  13. 13.
    Paletou, F. (1995) Astron. Astrophys. 302 587.ADSGoogle Scholar
  14. 14.
    Heinzel, P. (1995) Astron. Astrophys. 299 563.ADSGoogle Scholar
  15. 15.
    Vernazza, J.E., Avrett, E.H. and Loeser, R. (1981) Astrophys. J. Suppl. 45 635.ADSCrossRefGoogle Scholar
  16. 16.
    Gingerich, O., Noyes, R.W., Kalkofen, W. and Cuny, Y. (1971) Solar Phys. 18 347.ADSCrossRefGoogle Scholar
  17. 17.
    Avrett, E.H. and Loeser, R. (1987) in Numerical Radiative Transfer, Ed. W. Kalkofen, Cambridge University Press, Cambridge, 135.Google Scholar
  18. 18.
    Fontenla, J.M., Avrett, E.H. and Loeser, R. (1990) Astrophys J. 355 700.ADSCrossRefGoogle Scholar
  19. 19.
    Fontenla, J.M., Avrett, E.H. and Loeser, R. (1991) Astrophys J. 377 712.ADSCrossRefGoogle Scholar
  20. 20.
    Fontenla, J.M., Avrett, E.H. and Loeser, R. (1993) Astrophys J. 406 319.ADSCrossRefGoogle Scholar
  21. 21.
    Avrett, E.H. (1999) in SOHO-8 Workshop, ESA-SP 446.Google Scholar
  22. 22.
    Avrett, E.H. (1998) in Solar Electromagnetic Radiation Study for Solar Cycle 22, Eds. J.M. Pap, C. Frohlich, and R.K. Ulrich, Kluwer, Dordrecht, 449.CrossRefGoogle Scholar
  23. 23.
    Carlsson, M. (1986) A Computer Program for Solving Multi-Level Non-LTE Radia-Live Transfer Problems in Moving or Static Atmospheres, Report No. 33, Upsalla Astronomical Observatory.Google Scholar
  24. 24.
    Gouttebroze, P. Lemaire, P., Vial, J.C. and Artzner, G. (1978) Astrophys J. 225 655.ADSCrossRefGoogle Scholar
  25. 25.
    Heinzel, P. and Hubeny, I. (1985) in Progress in Stellar Spectral Line Formation Theory, Eds. J.E. Beckman and L. Crivellari, NATO ASI Series, Vol. 152 137.CrossRefGoogle Scholar
  26. 26.
    Cooper, J., Ballagh, R.J. and Hubeny, I. (1989) Astrophys J. 344 949.ADSCrossRefGoogle Scholar
  27. 27.
    Hubeny, I. and Lites, B.W. (1995) Astrophys J. 455376.ADSCrossRefGoogle Scholar
  28. 28.
    Warren, H.P., Mariska, J.T. and Wilhelm, K. (1998) Astrophys. J. 119 105.ADSCrossRefGoogle Scholar
  29. 29.
    Rutten, R.J. and Uitenbroek, H. (1991) Solar Phys. 134 15.ADSCrossRefGoogle Scholar
  30. 30.
    Kalkofen, W. (1999) in Magnetic Fields and Oscillations, Eds. B. Schmieder, A. Hofmann and J. Staude, ASP Confer. Series, Vol. 184 227.Google Scholar
  31. 31.
    Deubner, F.-L. and Steffens, S. (1999) in Magnetic Fields and Solar Processes, ESA-SP 448, 149.ADSGoogle Scholar
  32. 32.
    Curdt, W. and Heinzel, P. (1998) Astrophys J. 503 L95.ADSCrossRefGoogle Scholar
  33. 33.
    Heinzel, P. and Curdt, W. (1999) in Magnetic Fields and Oscillations, Eds. B. Schmieder, A. Hofmann and J. Staude, ASP Confer. Series, Vol. 184 201.Google Scholar
  34. 34.
    Curdt, W., Heinzel, P., Schmidt, W., Tarbell, T., von Uexkull, M. and Wilken, V. (1999), in Magnetic Fields and Solar Processes, ESA-SP 448, 177.ADSGoogle Scholar
  35. 35.
    Carlsson, M. and Stein, R.F. (1994) in Chromospheric Dynamics, Ed. M. Carlsson, University of Oslo, Oslo, 47.Google Scholar
  36. 36.
    Carlsson, M. and Stein, R.F. (1995) Astrophys. J. 440 L29.ADSCrossRefGoogle Scholar
  37. 37.
    Carlsson, M. and Stein, R.F. (1997) in Solar and Heliospheric Plasma Physics, Eds. G.M. Simnett, C.E. Alissandrakis and L. Vlahos, Springer-Verlag, Berlin, 159.CrossRefGoogle Scholar
  38. 38.
    Carlsson, M. and Stein, R.F. (1998) in New Eyes to See Inside the Sun and Stars, Eds. F.-L. Deubner et al., IAU, 435.CrossRefGoogle Scholar
  39. 39.
    Scharmer, G.B. and Carlsson, M. (1985) J. Comput. Phys. 59 56.ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Kalkofen, W., Ulmschneider, P. and Avrett, E.H. (1999) Astrophys J. 521 L141.ADSCrossRefGoogle Scholar
  41. 41.
    Carlsson, M., Judge, P.G. and Wilhelm, K. (1997) Astrophys J., 486 L63.ADSCrossRefGoogle Scholar
  42. 42.
    Rutten, R.J. (1999) in Magnetic Fields and Solar Oscillations, Eds. B. Schmieder, A. Hofmann and J. Satude, ASP Confer. Series, Vol. 184 181.Google Scholar
  43. 43.
    Andretta, V., Jordan, S.D., Brosius, J.W., Davila, J.M., Thomas, R.J., Behring, W.E. and Thompson, W.T. (1999) Astrophys J., submitted.Google Scholar
  44. 44.
    Steffens, S., Deubner, F.-L., Fleck, B. and Wilhelm, K. (1997) in Fifth SOHO Workshop, ESA-SP 404, 685.Google Scholar
  45. 45.
    Avrett, E.H. (1996) in Stellar Surface Structure, Eds. K.G. Strassmeier and J.L. Linsky, IAU, 503.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • P. Heinzel
    • 1
  1. 1.Astronomical InstituteAcademy of Sciences of the Czech RepublicOndřejovCzech Republic

Personalised recommendations