Examples of Non-Smooth Mechanical Systems — An Overview —

Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 72)


The following overview on non-smooth dynamical systems concentrates on applications. The aim is to show that real world problems often lead to non-smooth systems and, thus, there is a need to deal with such systems. Moreover, further work will be stimulated by demonstrating some examples of practical relevance. At present, non-smooth systems are a challenge to engineers and mathematicians as well.


Chaotic Motion External Excitation Heat Exchanger Tube Railway Wheel Impact Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aslam, M.; Godden, W.G.; Scalise, D.T.: Earthquake rocking response of rigid bodies. J. of Struct. Engng. 106 (1980) 377–392.Google Scholar
  2. [2]
    Babitsky, V.I.: The Theory of Vibro-Impact Systems (in Russian). Nauka, Moscow 1976.Google Scholar
  3. [3]
    Bishop, S.R.; Thompson, M.G.; Foale, S.: Prediction of period-1 impacts in a driven beam. Proc. R. Soc. Lond. A 452 (1996) 2579–2592.ADSCrossRefGoogle Scholar
  4. [4]
    Bogacz, R.; Ryczek, B.: Dry friction self-excited vibrations; analysis and experiments. Engng. Trans. 45 (1997) 487–504.Google Scholar
  5. [5]
    Brogliato, B.: Nonsmooth Impact Mechanics. Lecture Notes in Control and Information Sciences 220, Springer, Berlin 1996.zbMATHGoogle Scholar
  6. [6]
    Budd, C; Dux, F.: Chattering and related behaviours in impact oscillators. Proc. R. Soc. Lond. A 347 (1994) 365–389.ADSzbMATHGoogle Scholar
  7. [7]
    Deck, J.F.; Dubowsky, S.: On the limitations of predictions of the dynamic response of machines with clearance connections. ASME Flexible Mechanisms, Dynamics and Analysis 47 (1992) 461–469.Google Scholar
  8. [8]
    Den Hartog, J.P.: Forced vibrations with Coulomb and viscous friction. ASME APM 53 (1931) 107–115.Google Scholar
  9. [9]
    Feeny, B.F.; Moon, F. C: Chaos in a forced dry-friction oscillator: experiments and numerical modelling. J. Sound Vib. 170 (1994) 303–323.ADSCrossRefGoogle Scholar
  10. [10]
    Fingberg, U.: A model of wheel-rail squealing noise. J. Sound Vib. 143 (1990) 365–377.ADSCrossRefGoogle Scholar
  11. [11]
    Fritzer, A: Nichtlineare Dynamik von Steuertrieben. Diss., Fortschr.-Ber. VDI, R 11, Nr. 176, VDI Verlag, Düsseldorf 1992.Google Scholar
  12. [12]
    Glocker, C.: Dynamik von Starrkörpersystemen mit Reibung und Stößen. Diss., Fortsch.-Ber. VDI, R 18, Nr. 182, VDI Verlag, Düsseldorf 1995.Google Scholar
  13. [13]
    Glocker, C.; Pfeiffer, F.: Dynamical systems with unilateral contacts. Nonlinear Dynamics 3 (1992) 245–259.CrossRefGoogle Scholar
  14. [14]
    Goyda, H.; Teh, C: A study of the impact dynamics of loosely supported heat exchanger tubes. ASME J. Pressure Tech. 111 (1989) 394–401.Google Scholar
  15. [15]
    Grabec, I.: Chaotic dynamics of cutting process. Int. J. Mech. Tools Manufct. 28 (1988) 19–32.CrossRefGoogle Scholar
  16. [16]
    Gradisek, J.; Govekar, E.; Grabec, I.: A chaotic cutting process and determining optimal cutting parameter values using neutral networks. Int. Mech. Tools Manufact. 36(1996) 1161–1172.Google Scholar
  17. [17]
    Guggenheimer, J.; Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, New York 1983.Google Scholar
  18. [18]
    Guran, A; Pfeiffer, F.; Popp, K. (Eds): Dynamics with Friction. World Scientfic, Singapore 1996.zbMATHGoogle Scholar
  19. [19]
    Guran, A.; Feeny, F.; Hinrichs, N.; Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl Mech. Rev. 51 (1998) pp. 321–341.ADSCrossRefGoogle Scholar
  20. [20]
    Hendriks, F.: Bounce and chaotic motion in impact print hammers. IBM J. Res. Development 27 (1983) 24–31.ADSzbMATHCrossRefGoogle Scholar
  21. [21]
    Hinrichs, N.: Reibungsschwingungen mit Selbst-und Fremderregung: Experiment, Modellierung und Berechnung. Diss. Fortschr.-Ber. VDI, R 11, Nr. 240, VDI Verlag, Düsseldorf 1997.Google Scholar
  22. [22]
    Hinrichs, N.; Oestreich, M.; Popp, K.: Dynamics of oscillators with impact and friction. Chaos, Soliton and Fractals 8 (1997) 535–558.ADSzbMATHCrossRefGoogle Scholar
  23. [23]
    Hogan, S.J.: On the motion of a rigid block, tethered at one corner, under harmonic forcing.. Proc. R. Soc. LondA 439 (1992) 35–45.MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    Hogan, S.J.: Heteroclinic bifurcations in damped rigid block motion. Proc. R. Soc. Lond A 439 (1992) 155–162.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    Hogan, S. I: Slender rigid block motion. J. of Eng. Mechanics 120 (1994) 11–24.ADSCrossRefGoogle Scholar
  26. [26]
    Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84 (1982) 173–189.ADSzbMATHGoogle Scholar
  27. [27]
    Housner, G.W.: Limit design of structures to resist earthquakes. Proc. of the World Conference on Earthquake Engineering, 1956.Google Scholar
  28. [28]
    Housner, G W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seis. Soc. Am. 53 (1963) 403–417.Google Scholar
  29. [29]
    Hsu, D.S.: Impulsive parametric excitation: theory. J. Appl Mech. 39 (1972) 551–559.zbMATHCrossRefGoogle Scholar
  30. [30]
    Hsu, C.S.: Cell-to-Cell Mapping. Springer, New York 1987.zbMATHCrossRefGoogle Scholar
  31. [31]
    Ibrahim, R.A.; Soom, A.: Friction — induced vibration, chatter, squeal, and chaos. Trans. ASME: Friction-Induced Vibr., Chatter, Squeal, and Chaos, DE-Vol. 49 (1992) 107–121.Google Scholar
  32. [32]
    Isaksen; P.; True, H.: On the ultimate transition to chaos in the dynamics of Cooperrider’s bogie. Chaos, Solitons and Fractals 8 (1997) 559–581.ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    Ishyama, Y.: Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthquake Engng. and Struct. Dynamics 10 (1982) 635–650.CrossRefGoogle Scholar
  34. [34]
    Isomäki, H.: Fractal properties of the bouncing-ball dynamics. In [72] 125–131.Google Scholar
  35. [35]
    Iyengar, R: N.; Manohar, C.S.: Rocking response of rectangular rigid blocks under random noise base excitations. Int. J. Non-Linear Mechanics 26 (1991) 885–892.ADSCrossRefGoogle Scholar
  36. [36]
    Kaas-Petersen, C:. Chaos in a railway bogie. Acta Mech. 61 (1986) 89–107.MathSciNetCrossRefGoogle Scholar
  37. [37]
    Karagiannis, K.; Pfeiffer, F.: Theoretical and experimental investigations of gear-ratthing. Nonlinear Dynamics 2 (1991) 367–387.CrossRefGoogle Scholar
  38. [38]
    Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin 1958.CrossRefGoogle Scholar
  39. [39]
    Kletczka, M.; Kreuzer, E.; Wilmers; C.: Crisis in mechanical systems. In [72] 141–148.Google Scholar
  40. [40]
    KüCükay, F.; Pfeiffer, F.: Über Rasselschwingungen in KfZ-Schaltgetrieben. Ing.-Arch. 56 (1986) 25–37.CrossRefGoogle Scholar
  41. 41]
    Kunert, A.; Pfeiffer, F.: Stochastic model for ratthing in gear-boxes. In [72] 173–180.Google Scholar
  42. [42]
    Lipscombe, P.R.; Pellegrino, S.: Free rocking of prismatic blocks. J. of Eng. Mechanics 120 (1994) 11–24.Google Scholar
  43. [43]
    Magnus, K.; Popp, K.: Schwingungen. Teubner, Stuttgart 1997.Google Scholar
  44. [44]
    Marui, E.; Kato, S.: Forcecd vibration of a base-excited single-degree-of-freedom system with Coulomb friction. ASME J. Dyn. Syst. Meas. Control 106 (1984) 280–285.zbMATHCrossRefGoogle Scholar
  45. [45]
    Michalopulos, D.; Dinarogonos, A.: Dynamic behavior of geared systems with backlash due to stick-slip vibratory motion. Wear 8 (1982) 135–143.CrossRefGoogle Scholar
  46. [46]
    Moreau, J.J.; Panagiotopoulos, P.D. (Eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures No 302, Springer, Wien 1988.zbMATHGoogle Scholar
  47. [47]
    Moser, M.A.: The response of stick-slip systems to random seismic excitation. Diss. Caltech, Pasadena 1987.Google Scholar
  48. [48]
    Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145 (1991) 279–297.ADSCrossRefGoogle Scholar
  49. [49]
    Oden, J.T.; Martins, J.A.C.: Models and compatational methods for dynamic friction phenomena. Com. Math. in Appl. Mech. and Engng. 52 (1985) 527–634.MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. [50]
    Oestreich, M.; Hinrichs, N.; Popp, K.: Bifurcation and stability analysis for a non-smooth friction aoscillator. Arch. Appl. Mech. 66 (1996) 301–314.ADSzbMATHCrossRefGoogle Scholar
  51. [51]
    Oestreich, M.: Untersuchung von Schwingern mit nichtglatten Kennlinien. Fortschr.-Ber. VDI, R 11, Nr. 258, VDI Verlag, Düsseldorf 1998.Google Scholar
  52. [52]
    Persson, B.N.J.: Sliding Friction. Springer, Berlin 1998.Google Scholar
  53. [53]
    Peterika, F.; Vacik, J.: Transition to chaotic motion in mechanical systems with impact. J. Sound Vib. 154 (1992) 95–115.ADSCrossRefGoogle Scholar
  54. [54]
    Pfeiffer, F.: Mechanische Systeme mit unstetigen Übergängen. Ing.-Arch. 54 (1984) 232–240.zbMATHCrossRefGoogle Scholar
  55. [55]
    Pfeiffer, F.: Seltsame Attraktoren in Zahnradgetrieben. Ing.-Arch. 58 (1988) 113–125.CrossRefGoogle Scholar
  56. [56]
    Pfeiffer, F.: Dynamical systems with time-varying or unsteady structure. Zangew. Math. Mech. 71 (1991) T6–T22.MathSciNetGoogle Scholar
  57. [57]
    Pfeiffer, F.; Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York 1996.CrossRefGoogle Scholar
  58. [58]
    Pontryagin, L.S.; Et Al.: The Mathematical Theory of Optimal Processes. Interscience Publ., New York 1962.zbMATHGoogle Scholar
  59. [59]
    Popp, K.: Beiträge zur Dynamik von Magnetschwebebahnen auf geständerten Fahrwegen. Fortschr.-Ber. VDI-Z. R 12, Nr. 35, VDI-Verlag, Düsseldorf 1978.Google Scholar
  60. [60]
    Popp, K.: Analyse von Systemen mit Impuls-Parametererregung. Ing.-Arch. 50 (1980) 49–60.Google Scholar
  61. [61]
    Popp, K.: Chaotische Bewegungen beim Reibschwinger mit simultaner Selbst-und Fremderregung. Zangew. Math. Mech. 71 (1991) 71–73.CrossRefGoogle Scholar
  62. [62]
    Popp, K.: Some model problems showing stick-slip motion and chaos. Trans. ASME: Friction-Induced Vibr., Chatter, Squeal, and Chaos, DE-Vol. 49 (1992) 1–12.Google Scholar
  63. [63]
    Popp, K.: Nichtlineare Schwingungen mechanischer Strukturen mit Füge-oder Kontaktstellea Zangew. Math. Mech. 74 (1994) 147–165.CrossRefGoogle Scholar
  64. [64]
    Popp, K.; Hinrichs, N.; Oestreich, M.: Analysis of a self excited friction oscillator with external excitation. In [18] 1–35.Google Scholar
  65. [65]
    Popp, K.; Hinrichs, N.; Oestreich, M.: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sadhana, Bangalore, 20 (1995) 627–654.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    Popp, K.; Schneider, E.; Irretier, H.: Noise Generation in railway wheels due to wheel-rail contact forces. Proc. 9th IAVSD-Symp., Linköping 1990, 448–466.Google Scholar
  67. [67]
    Popp, K.; Stelter, P.: Nonlinear oscillations of structures induced by dry friction. Proc. IUTAM Symp. Nonl. Dyn. in Engng. Systems, Springer, Stuttgart 1989.Google Scholar
  68. [68]
    Popp, K.; Stelter, P.: Stick-slip vibrations and chaos. Phil. Trans. R. Soc. Lond A (1990) 89–105.Google Scholar
  69. [70]
    Priestley, M.J.N.; Evison, R.J.; Carr, A.J.: Seismic response analysis of structures free to rock on their foundations. Bull. of the New Zealand Seis. Soc. for Earthquake Engng. 11 (1978) 141–150.Google Scholar
  70. [71]
    Reithmeier, E.: Periodic solutions of nonlinear dynamical systems with discontinuities. In [72] 249–256.Google Scholar
  71. [72]
    Schiehlen, W. (Eds.): Nonlinear Dynamics in Engineering Systems. Proc. IUTAM Symp. in Stuttgart 1989. Springer, Berlin 1990.zbMATHGoogle Scholar
  72. [73]
    Shaw, S.W.; Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90 (1983) 129–155.MathSciNetADSCrossRefGoogle Scholar
  73. [74]
    Shaw, S.W.: Dynamics of harmonically excited systems having rigid amplitude constraints. Part I: Subharmonic motions and local bifurcations. J. App. Mech. 52 (1985) 453–458.CrossRefGoogle Scholar
  74. [75]
    Shaw, S.W.: Dynamics of harmonically excited system having rigid amplitude constraints. Part II: Chaotic motions and global bifurcations. J. Appl. Mech. 52 (1985) 459–464.ADSCrossRefGoogle Scholar
  75. [76]
    Shaw, S.W.: On the dynamic response of a system with dry friction. J. Sound Vib. 108 (1986) 305–325.ADSzbMATHCrossRefGoogle Scholar
  76. [77]
    Sikora, J.; Bogacz, R.: On dynamics of several degrees-of-freedom systems in relative motion with friction. Zangew. Math. Mech. 73 (1993) T118–T122.zbMATHGoogle Scholar
  77. [78]
    Singer, I.L.; Pollock, H.M. (Eds.): Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series E. Vol. 220, Klüver, Dortrecht 1992.Google Scholar
  78. [79]
    Springer, H.; Ullrich, M.: Dynamics of dot-matrix printers. In [72] 297–304.Google Scholar
  79. [80]
    Stelter, P.: Nichtlineare Schwingungen reibungserregter Strukturen. Fortschr.-Ber. VDI, R 11, Nr. 137, VDI-Verlag, Düsseldorf 1990.Google Scholar
  80. [81]
    Stelter, P.; Sextro, W.: Bifurcation in dynamic systems with dry friction. Int. Series of Numerical Mathematics 97 (1991) 343–347.MathSciNetGoogle Scholar
  81. [82]
    Szcz Ygeelski, W.M.: Dynamisches Verhalten eines schnell drehenden Rotors bei Anstreifvorgängen. Diss. Nr. 8094, ETH Zürich 1986.Google Scholar
  82. [83]
    True, H.: Some recent developments in nonlinear railway vehicle dynamics. Proc. 1st European Nonlinear Oscillations Conference. Akademie Verlag., Berlin 1993, 129–148.Google Scholar
  83. [84]
    Tung, P.C.; Shaw, S.W.: The dynamics of an impact print hammer. J. of Vibration and Acoustics Stress Reliability Design 110 (1988) 193–200.zbMATHCrossRefGoogle Scholar
  84. [85]
    Utkin, V.I.: Sliding Modes and their Application in Variable Structure Systems. MIR Publ., Moscow 1978.zbMATHGoogle Scholar
  85. [86]
    Vielsack, P.; Storz, M.: Bifurcation of motion in a technical system with stick-slip and impact. Inst. f. Wiss. Rechnen u. Math. Modellbildung. Preprint Nr. 95/5, Uni Karlsruhe 1995.Google Scholar
  86. [87]
    Whiston, G.S.: Global dynamics of a vibro impact linear oscillator. J. Sound Vib. 118 (1987) 395–429.Google Scholar
  87. [88]
    Wood, L.A.; Byrne, K.P.: Analysis of a random repeated impact process. J. Sound Vib. 78 (1981) 329–345.ADSzbMATHCrossRefGoogle Scholar
  88. [89]
    Wood, L.A.; Byrne, K.P.: Experimental investigation of a random repeated impact process. J. Sound Vib. 85 (1982) 53–69.ADSCrossRefGoogle Scholar
  89. [90]
    Yim, S.C.S.; Lin, H.: Nonlinear impact and chaotic response of slender rocking objects. J. of Eng Mechanics 117 (1991) 2079–2100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • K. Popp
    • 1
  1. 1.Institute of MechanicsUniversity of HannoverHannoverGermany

Personalised recommendations