Advertisement

On (Non-)Existence and (Non-)Uniqueness of Solutions in Frictional Contact Problems

  • Anders Klarbring
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 72)

Abstract

Questions related to existence and uniqueness of solutions to problems involving Coulomb friction have been discussed in three branches of mechanics: (i) rigid body dynamics; (ii) discrete (e.g. finite element discretized) quasi-static structural mechanics; and (iii) linear elasticity. The written part of this lecture is concerned with a linear elastic dynamic model that includes (ii) and which makes it possible to discuss findings from (i). In the oral part of the lecture results from (iii) will be reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Jellet, A Treatise on the Theory of Friction, Macmillan and Co., London (1872).Google Scholar
  2. 2.
    V. Janovský, Catastrophic features of Coulomb friction model, Technical Report KNM-0105044/80, Charles University, Prague (1980).Google Scholar
  3. 3.
    V. Janovský, “Catastrophic features of Coulomb friction model”, ed. J.R. Whiteman, The Mathematics of Finite Elements and Applications, Academic Press, London (1981) 259–264.Google Scholar
  4. 4.
    A. Klarbring, Contact problems with friction — using a finite dimensional description and the theory of linear complementarity, Linköping Studies in Science and Technology, Thesis No. 20, LIU-TEK-LIC-1984:3.Google Scholar
  5. 5.
    A. Klarbring, “Examples of non-uniqueness and non-existence of solutions to quasistatic contact problems with friction”, Ingenieur-Archiv 60 (1990) 529–541.Google Scholar
  6. 6.
    J.A.C. Martins, M.D.P. Monteiro Marques, and F. Gastaldi, “On an example of nonexistence of solutions to a quasistatic frictional contact problem”, European Journal of Mechanics/A 13 (1994) 113–133.MathSciNetzbMATHGoogle Scholar
  7. 7.
    J. J. Moreau, “Unilateral contact and dry friction in finite freedom dynamics”, eds. J.J. Moreau and P.D. Panagiotopoulos, Nonsmooth Mechanics and Applications, Springer Verlag (1988) 1–81.Google Scholar
  8. 8.
    L.-E. Andersson and A. Klarbring, “A survey of basic mathematical results for frictional contact problems”, eds. R. Gilbert, P.D. Panagiotopoulos and P. Pardalos, From Convexity to Nonconvexity: A Volume Dedicated to the Memory of Professor Geatano Fichera, to appear.Google Scholar
  9. 9.
    L.-E. Andersson: Quasistatic frictional contact problems with finitely many degrees of freedom, manuscript.Google Scholar
  10. 10.
    P.W. Christensen, A. Klarbring, J.-S. Pang and N. Strömberg, “Formulation and Comparison of Algorithms for Frictional Contact Problems”, International Journal for Numerical Methods in Engineering 42 (1998) 145–173.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    A. Klarbring and J.-S. Pang, “Existence of solutions to discrete semicoercive frictional contact problems”, SIAM Journal on Optimization 8(2) (1998) 414–442.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Klarbring, A. Mikelic and M. Shillor, “Frictional contact problems with normal compliance”, International Journal of Engineering Science 26 (1988) 811–832.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Klarbring, “Derivation and analysis of rate boundary-value problems with friction”, European Journal of Mechanics /A 1 (1990) 211–226.MathSciNetGoogle Scholar
  14. 14.
    I. Doudoumis, E. Mitsopoulou and N. Charalambakis, “The influence of the friction coefficients on the uniqueness of the solution of the unilateral contact problem”, eds. M. Raous, M. Jean and J.J. Moreau, Contact Mechanics, Plenum Press, New York (1995) pp. 63–70.Google Scholar
  15. 15.
    P. Lötstedt, “Coulomb friction in two-dimensional rigid-body systems”, Zeitschrife für Angewandte Mathematik und Mechanik 61 (1981) 605–615.zbMATHCrossRefGoogle Scholar
  16. 16.
    F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts, John Wiley, New York (1996).zbMATHCrossRefGoogle Scholar
  17. 17.
    J.C. Trinkle, J.S. Pang, S. Sudarsky and G. Lo, “On dynamic multi-rigid-body contact problems with Coulomb friction”, Zeitschrift für Angewandte Mathematik und Mechanik 77(4) (1997) 267–280.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Klarbring, “Steady sliding and linear complementarity”, in M.C. Ferris and J.S. Pang, eds., Complementarity and Variational Problems: State of the Art, SIAM Publications, Philadelphia (1997) pp. 132–147.Google Scholar
  19. 19.
    A. Klarbring and J.-S. Pang, “The discrete steady sliding problem”, Zeitschrift für Angewandte Mathematik und Mechanik, to appear.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Anders Klarbring
    • 1
  1. 1.Division of Mechanics Department of Mechanical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations