Advertisement

On The Problem of Constrained Collision

  • A. P. Ivanov
Part of the Solid Mechanics and its Applications book series (SMIA, volume 72)

Abstract

Collision of solids is a complex phenomenon which involves various physical aspects: deformations, vibrations, sound, heating, and so on. It is impossible to account for all these effects in full scale, and any model of impact is more or less approximate. In multibody dynamics, collisions are treated as instantaneous changes of velocities and angular velocities under impulsive reactions. The problem is to determine such changes or, similarly, the impulses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldsmith, W.: Impact. The Theory and Physical Behavior of Colliding Solids, Edward Arnold, London, 1960.Google Scholar
  2. 2.
    McLaurin, C: A Treatise on Fluxions, Ruddimans, Edinburgh, 1742.Google Scholar
  3. 3.
    Coriolis, G.: Theorie Mathematique des Effets du Jeu de Billiard, Carlian-Goeuvy, Paris, 1835.Google Scholar
  4. 4.
    Appell, P.: Traité de Méchanique Rationelle, Vol.2, Gauthier-Villars, Paris, 1953.Google Scholar
  5. 5.
    Pfeiffer, F. and Glocker, Ch.: Multibody Dynamics with Unilateral Contacts, John Wiley & Sons, New York, 1996.zbMATHCrossRefGoogle Scholar
  6. 6.
    Boussinesq, J.: Applications des Potentiels à l’Étude de l’Équilibre et du Mouvement des Solides Elastiques, Gauthier-Villars, Paris, 1885.zbMATHGoogle Scholar
  7. 7.
    D’Alembert, J.: Traité de Dynamique, David, Paris, 1742.Google Scholar
  8. 8.
    Ivanov A.P.: On multiple impact, J.Appl. Maths Mechs, 59 (1995), 887–902.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Ivanov A.P.: The problem of constrained impact, J.Appl. Maths Mechs, 61 (1997), 341–353.ADSCrossRefGoogle Scholar
  10. 10.
    Stronge W.J.: Rigid body collisions with friction, Proc. Roy. Soc. London, Ser. A, 431 (1990), No. 1881, 169–181.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Ivanov A.P.: Energetics of impact with friction, J.Appl. Maths Mechs, 56 (1992), 527–534.ADSCrossRefGoogle Scholar
  12. 12.
    Stronge W.J.: Theoretical coefficient of restitution for planar impact of rough elasto-plastic bodies. Amer. Mech. Divis. 205 (1995), 351–362.Google Scholar
  13. 13.
    Ivanov A.P.: Visco-elastic approach to impact with friction. Amer. Mech. Divis. 205 (1995), 115–127.Google Scholar
  14. 14.
    Ilogan S.J.: On the motion of a rigid block, tethered at one corner, under harmonic forcing. Proc. Roy. Soc. London 439 A (1992) N 1905, 35–45.ADSCrossRefGoogle Scholar
  15. 15.
    Hoga.n S.J.: On the dynamics of rigid block motion under harmonic forcing. Proc. Roy. Soc. London 425 A (1989) N 1869, 411–476.MathSciNetADSGoogle Scholar
  16. 16.
    Ivanov A.P.: Dynamics of Systems with Mechanical Collisions, International program of education, Moscow, 1997 (in Russian).Google Scholar
  17. 17.
    Formalskii A.M.: The Moving of Anthropomorphic Mechanisms, Nauka, Moscow, 1982 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • A. P. Ivanov
    • 1
  1. 1.Moscow State Academy for Device and InformationMoscowRUSSIA

Personalised recommendations