Some Basics of Unilateral Dynamics

  • J. J. Moreau
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 72)


In this Proceedings volume various situations are met in which the dynamical motion of collections of bodies subject to unilateral constraints of non-interpenetrability has to be calculated.


Contact Force Bilinear Form Normal Cone Differential Inclusion Unilateral Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Anitescu, F. A. Potra and D. E. Stewart (1998) Time-stepping for three-dimensional rigid body dynamics, in J. A. C. Martins and A. Klarbring (eds.), Computational Modeling of Contact and Friction, special issue of Computer Meth. in Appl. Mech. and Engng., to appear.Google Scholar
  2. 2.
    D. Baraff (1994) Fast contact force computation for non-penetrating rigid bodies, Computer Graphics (Proc. SIGGRAPH), 28, 23–34.Google Scholar
  3. 3.
    P. A. Cundall (1971) A computer model for simulating progressive large scale movements of blocky rock ystems, Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, France, Vol. 1, 132–150.Google Scholar
  4. 4.
    E. Delassus (1917) Mémoire sur la théorie des liaisons finies unilatérales, Ann. Sci. Ecole Norm. Sup., 34, 95–179.MathSciNetzbMATHGoogle Scholar
  5. 5.
    G. de Saxcé and Z. Q. Feng (1991) New inequation and functional for contact with friction, J. Mech. of Struct. and Machines, 19, 301–325.CrossRefGoogle Scholar
  6. 6.
    P. Lötstedt (1982) Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math., 42, 281–296.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. D. P. Monteiro Marques (1993) Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhäuser, Basel, Boston, Berlin.zbMATHGoogle Scholar
  8. 8.
    J. J. Moreau (1963) Les liaisons unilatérales et le principe de Gauss, Comptes Rendus Acad. Sci. Paris, 256, 871–874.MathSciNetGoogle Scholar
  9. 9.
    J. J. Moreau (1966) Quadratic programming in mechanics: dynamics of one-sided constraints, SIAM J. Control, 4, 153–158.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. J. Moreau (1985) Standard inelastic shocks and the dynamics of unilateral constraints, in G. Del Piero and F. Maceri (eds.), Unilateral Problems in Structural Analysis, CISM Courses and Lectures, Vol. 288, Springer-Verlag, Wien, New York, 173–221.Google Scholar
  11. 11.
    J. J. Moreau (1988) Unilateral contact and dry friction in finite freedom dynamics, in J. J. Moreau and P. D. Panagiotopoulos (eds.), Nonsmooth Mechanics and Applications, CISM Courses and Lectures, Vol. 302, Springer-Verlag, Wien, New York, 1–82.Google Scholar
  12. 12.
    J. J. Moreau (1997) Numerical investigation of shear zones in granular materials, in P. Grassberger and D. Wolf (eds.) Proc. HLRZ-Workshop on Friction, Arching, Contact Dynamics, World Scientific, Singapore, 233–247.Google Scholar
  13. 13.
    J. J. Moreau (1998) Numerical aspects of the sweeping process, in J. A. C. Martins and A. Klarbring (eds.), Computational Modeling of Contact and Friction, special issue of Computer Meth. in Appl. Mech. and Engng., to appear.Google Scholar
  14. 14.
    L. Paoli and M. Schatzman (1993) Mouvements à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie, Math. Modelling and Num. Anal., 27, 673–717.MathSciNetzbMATHGoogle Scholar
  15. 15.
    F. Pfeiffer and C. Glocker (1996) Multibody Dynamics with Unilateral Contacts, John Wiley and Sons, New York.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. J. Moreau
    • 1
  1. 1.Laboratoire de Mécanique et Génie Civil Case 048Université Montpellier IIMontpellier CedexFrance

Personalised recommendations