Skip to main content

Influence of Physical Phenomena on the Formation of Pollutants in Combustion

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

Abstract

Combustion occurs in flames and combustion chambers with direct interaction with advective, diffusive and conductive physical phenomena. The cooperative interaction between physical and chemical phenomena is crucial for building flames. Combustion chambers that are used in industry are designed in order to play with these two kinds of phenomena with the aim of getting the optimal result, under certain constraints, of course. The properties to be optimised are numerous, and due to that, the optimisation process is not straightforward. However, numerical calculation methods can now be of great help since they accelerate the development phase of an industrial application. Among the several physical and mechanical phenomena which closely interact with chemical reactions in practical applications, turbulence is obviously the one which has the strongest impact on the principal features of the reactive flow. The way turbulent structures influence the oxidation process and the formation of hot products and pollutants is still not very well understood although many works have been devoted to this challenging issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borghi R. and Destriau M. (1998) Combustion and Flames: Chemical and Physical Principles, Technip

    Google Scholar 

  2. Giovangigli V. and Darabiha N. (1988) Vector computers and complex chemistry combustion, Proc. Conf. Mathematical Modeling in Combustion and Related Topics, Brauner C. M. and Schmidt-Laine C. (Eds.), NATO Adv. Sci. Inst. Ser.E, Vol. 140, Martinus Nijhoff Pub., Dordrecht, 491–503

    Chapter  Google Scholar 

  3. Bilger R. W., Esler M. B., Starner S.H. (1991) On reduced mechanisms for methane-air combustion, in reduced kinetic mechanisms and asymptotic approximations for methane-air flames, Lecture Notes in physics, Ed. Smooke M. D., Vol.384, Springer Verlag, 86–110

    Google Scholar 

  4. Zur Loye A. R. and Bracco F. V. (1987), Combust, and Flame, Vol. 69, 59–69

    Article  Google Scholar 

  5. Masri A.R., Bilger R. W., and Dibble R. W. (1988) Conditional probability density Functions measured in turbulent nonpremixed flames of methane near extinction, Combustion and Flame, Vol 74, 267–284

    Article  CAS  Google Scholar 

  6. Schiestel R. (1998), Les écoulements turbulents, modélisation et simulation, 2nd Ed., Hermes, Paris.

    Google Scholar 

  7. Borghi R. (1988) Turbulent combustion modelling, Prog. Energy Combust. Sci., Vol. 14,. 245–292

    Article  CAS  Google Scholar 

  8. Masuya G., and Libby P. A. (1981) Non-gradient theory for oblique premixed turbulent flames, AIAA Journal, vol. 10,1590–1599.

    Article  Google Scholar 

  9. Levenspiel O. (1962), Chemical reaction engineering, Wiley Int. Ed.

    Google Scholar 

  10. Villermaux J. (1986), Micromixing phenomena in stirred reactors, Encyclopedia of fluid mechanics, Gulf Pub. Co., 707

    Google Scholar 

  11. Longwell J. P. and Weiss M. A. (1955) High temperature reaction rates in hydrocarbon combustion, IEC, Vol.47, n°8.

    Google Scholar 

  12. Bonniot C., Borghi R. and Magre P., (1977) AIAA paper 77–218

    Google Scholar 

  13. Borghi R. (1974), Etude theorique de l’optimisation de la combustion dans les foyers de turbomachines, Acta Astronautica, Vol 1, 667–685

    Article  CAS  Google Scholar 

  14. Spalding D. B. (1970), Mixing and Chemical Reaction in Steady, Confined Turbulent Flames, Thirteenth Symposium (Intl.) on Combustion, The Combustion Institute, 643

    Google Scholar 

  15. Magnussen B. F., and Hjertager H. (1976), Sixteenth Symposium (Intl.) on Combustion, The Combustion Institute, 719.

    Google Scholar 

  16. Bray K. N. C, Libby P. A., and Moss J. B. (1984), Combust. Sci. Tech., Vol. 41, 143–172

    Article  CAS  Google Scholar 

  17. Bray K. N. C, Moss J. B., and Libby P. A., (1987), Combust. Flame, Vol. 61, 87–102

    Article  Google Scholar 

  18. Candel S. M., and Poinsot T. (1990), Combust. Sci. Technol., Vol. 70, 1–15

    Article  CAS  Google Scholar 

  19. Cant R. S., Pope S. B., and Bray K. N. C. (1990), Twenty Third Symposium (Intl.) on Combustion, The Combustion Institute, 809.

    Google Scholar 

  20. Candel, S. M., Veynante, D., Lacas F., Maistret E., Darabiha, N., and Poinsot T. (1990), Recent Advances in Combustion Modeling, B.E. Larrouturou Ed., World Scientific, Singapore

    Google Scholar 

  21. Mantel, T. and Borghi, R. (1994) Combust. Flame, Vol. 96, 443–457

    Article  CAS  Google Scholar 

  22. Marble F.E., and Broadwell J.E. (1977), The Coherent Flame Model of non-premixed turbulent combustion, Project SQUID Report, TRW-9-PU.

    Google Scholar 

  23. Burke S. P. and Schumann T. E. W. (1928), Diffusion Flames, Indust. Eng. Chem., Vol. 20, No. 10, 998

    Article  CAS  Google Scholar 

  24. Peters N. (1986), Laminar Flamelet Concepts in Turbulent Combustion, Twenty-first Symposium (Intl.) on Combustion, The Combustion Institute, 1231–1250.

    Google Scholar 

  25. Pope S. B. (1985), PDF methods for turbulent reactive flows, Prog, in Energy Comb. Science, Vol. 11, 119–192

    Article  Google Scholar 

  26. Aubry C. and J. Villermaux (1975), Representation d’un mélange de deux courants de réactifs dans un réacteur agité continu. Chemical Engineering Sir., Vol. 30, 457–464

    Article  CAS  Google Scholar 

  27. C. Dopazo, E. O’Brien (1974), An approach to the autoignition of a turbulent mixture, Ada Astronautica, Vol 1, 1239–1266

    Article  CAS  Google Scholar 

  28. P. Caillau (1994), Modélisation et simulation de la combustion turbulente par une approche Probabiliste Eulérienne Lagrangienne, Thèse de Doctorat de l’Université de Rouen

    Google Scholar 

  29. Masri A. R., and Bilger R. W. (1988), Turbulent Non-Premixed Flames of Methane Near Extinction: Mean Structure from Raman Measurements, Combust, and Flame, Vol. 71, 245–266

    Article  CAS  Google Scholar 

  30. Westbrook C. K. and Dryer F. L. (1981), Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Comb. Sci. Tech., Vol. 27, 31–43

    Article  CAS  Google Scholar 

  31. Dagaut P., Boettner J. C., and Cathonnet M. (1991), Combust. Sci. Tech., Vol. 77, 127–148

    Article  CAS  Google Scholar 

  32. Young K. J., and Moss J. B. (1995), Combust. Sci. Technol., Vol 105, 33–53

    Article  CAS  Google Scholar 

  33. Dagaut P., Cathonnet M., Boettner J. C, and Gaillard F. (1988), Combust, and Flame, Vol. 71, 295–312

    Article  CAS  Google Scholar 

  34. Varin, E. (1998), Etude et développement du modèle de combustion turbulente PEUL: Application à la prédiction de la formation des suies dans les foyers aéronautiques, Thèse de doctorat de l’Université de Rouen

    Google Scholar 

  35. Wang H., and Frenklach M. (1997), Combust, and Flame, Vol. 110, 173–221.

    Article  CAS  Google Scholar 

  36. Balthasar M., Heyl A, Mauss F., Schmitt F., and Bockhorn H., (1996), Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 2369–2377

    Google Scholar 

  37. Ravet F., and Vervisch L. (1988), Modeling non-premixed turbulent combustion in aeronautical engines using PDF-Generator., AIAA Paper n°98-1027.

    Google Scholar 

  38. Mass U., and Pope S. B. (1992), Combust, and Flame, Vol. 88, 239–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zamuner, B., Borghi, R. (2000). Influence of Physical Phenomena on the Formation of Pollutants in Combustion. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics