Skip to main content

Chemistry of Combustion Processes

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

Abstract

The quantitative description and understanding of combustion processes needs extreme computational efforts and has at present to be restricted to relatively simple cases, due to a very complex interaction of chemical reaction, transport, and convection described by instationary or stationary partial differential equation systems. However, even a rather simplified treatment can give a lot of insight into combustion processes, as demonstrated in the following mainly for ID and 2D systems. Typical combustion processes are considered in the following with emphasis on three topics:

  1. 1.

    Basic physics and chemistry of combustion processes; homogeneous reaction systems: Processes like transport phenomena (heat conduction, mass diffusion etc.), thermodynamics, and chemistry in spatially homogeneous systems are studied because of their importance as basic elements of simple combustion processes.

  2. 2.

    Structure of laminar flame fronts; stationary and instationary flame propagation: Premixed and diffusion flame fronts are basic elements of turbulent flames in cases where chemical reaction can be assumed to take place in relatively thin layers (“flamelet model”). The structure of stationary laminar flame fronts as the result of the interaction of transport, chemistry, and flow is considered in detail for simple hydrocarbon fuels. Instationary behaviour plays an important role in ignition processes and for phenomena like quenching of turbulent flames, noise generation, etc.

  3. 3.

    Pollutant Formation Chemistry; Consequences for Turbulent Combustion: A detailed description of the chemistry of combustion is necessary to describe and understand pollutant formation (nitrogen oxides, polycyclic hydrocarbons, soot, etc.). Different methods are described to include detailed chemistry in terms of sets of elementary reactions into turbulent combustion modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. R. Stull, H. Prophet (eds.): JANAF Thermochemical Tables. U. S. Department of Commerce, Washington D. C. (1971), and addenda

    Google Scholar 

  2. A. Burcat: Thermochemical Data for Combustion, in: W. C. Gardiner (ed.), Combustion Chemistry. Springer, New York/Heidelberg (1984)

    Google Scholar 

  3. R. J. Kee, F. M. Rupley, J. A. Miller: The CHEMKIN Thermodynamic Data Base. SAND1A Report SAND87–8215 (1987)

    Google Scholar 

  4. J. O. Hirschfelder: Some Remarks on the Theory of Flame Propagation. 9th Symposium (International) on Combustion, p. 553. Academic Press, New York (1963)

    Google Scholar 

  5. R. J. Kee, J. Warnatz, J. A. Miller: A Fortran Program Computer Code for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients. SANDIA Report SAND83-8209 (1983)

    Google Scholar 

  6. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller: A Fortran Computer Code for the Evaluation of Gas-Phase Multicomponent Transport Properties. SANDIA Report SAND86-8246 (1986)

    Google Scholar 

  7. R. Zellner: Bimolecular Reaction Rate Coefficients, in: W. C. Gardiner jr. (ed.), Combustion Chemistry. Springer-Verlag, New York (1984)

    Google Scholar 

  8. W. C. Gardiner, J. Troe: Rate Coefficients of Thermal Dissociation, Isomerization, and Recombination Reactions, in: W. C. Gardiner jr. (ed.), Combustion Chemistry. Springer-Verlag, New York (1984)

    Chapter  Google Scholar 

  9. D. L. Baulch, T. Just, J. A. Kerr, M. Pilling, J. Troe, R. W. Walker, J. Warnatz: Compilation of Rate Data on C1/C2 Species Oxidation. J. Phys. Chem. Ref. Data 21,411–734 (1992)

    Article  CAS  Google Scholar 

  10. J. Warnatz: The Mechanism of High Temperature Combustion of Propane and Butane. Comb. Sci. Technol. 34,177 (1983)

    Article  CAS  Google Scholar 

  11. P. J. Robinson, K. A. Holbrook: Unimolecular Reactions. Wiley, London (1972)

    Google Scholar 

  12. B. Lewis, G. v. Elbe: Combustion, Flames, and Explosions in Gases. Academic Press, New York (1961)

    Google Scholar 

  13. J. Warnatz: The Structure of Laminar Alkane-, Alkene-, and Acetylene Flames. 18th Symposium (International) on Combustion, p. 369. The Combustion Institute, Pittsburgh (1981)

    Google Scholar 

  14. J. Warnatz: Critical Survey of Elementary Reaction Rate Coefficients in the C/H/O System, in: W.C. Gardiner (ed.), Combustion Chemistry, Springer, New York (1984).

    Google Scholar 

  15. J. Warnatz: Chemistry of High Temperature Combustion of Alkanes up to Octane. 20 th Symposium (International) on Combustion, p.845. The Combustion Institute, Pittsburgh (1984).

    Google Scholar 

  16. J. Warnatz, H. Bockhorn, A. Moser, H.W. Wenz: Experimental Investigation and Computational Simulations of Acetylene-Oxygen Flames from Near-Stoichiometric to Sooting Conditions. 19 th Symposium (International) on Combustion, p. 197. The Combustion Institute, Pittsburgh (1983).

    Google Scholar 

  17. J. Warnatz: Kohlenwasserstoff Oxidation bei hohen Temperaturen. Ber Bunsenges. Phys. Chem. 87, 1008 (1983).

    Article  CAS  Google Scholar 

  18. F. Dryer, I. Glassman, in: C.T. Bowman, J. Birkeland (eds.). Alternative Hydrocarbon Fuels. Combustion and Kinetics, A.I.A.A. New York (1979).

    Google Scholar 

  19. F.O. Rice: J. Am. Chem. Soc., 55, 3035 (1953).

    Article  Google Scholar 

  20. C. Esser, U. Maas, J. Warnatz: Chemistry of the Combustion of Higher Hydrocarbons and its Relation to Engine Knock. Proc. Int. Symp. On Diagnostics and Modelling of Combustion in Reciprocating Engines, p. 335. The Japanese Society of Mechanical Engineers. Tokyo (1985).

    Google Scholar 

  21. L.R. Petzold: A description of DASSL: A Differential/Algebraic System Solver, Sandia Reports SAND82-8637. Sandia National Laboratories, Livermore (1982); IMACS World Congress, Montreal 1982.

    Google Scholar 

  22. P. Deuflhard, F. Hairer, J. Zugek: One-Step and Extrapolation Methods for Differential/Algebraic Systems. Univ. Heidelberg SFB 123: Tech. Rep. 318 (1985).

    Google Scholar 

  23. P. Deuflhard, U. Nowak: Extrapolation Integrators for Quasilinear Implicit ODEs. Univ. Heidelberg SFB 123: Tech. Rep. 332. (1985).

    Google Scholar 

  24. J.R. Leis, M.A. Kramer: Computers and Chemical Engineering 9, 93 (1985).

    Article  CAS  Google Scholar 

  25. M. Caracotsius, W.E. Stewart: Computers and Chemical Engineering 9, 359 (1985).

    Article  Google Scholar 

  26. W.J. Pitz, J. Warnatz, C.K. Westbrook: Simulation of Auto-Ignition over a Large Temperature Range. 22 th Symposium (International) on Combustion, p.893. The Combustion Institute, Pittsburgh (1989

    Google Scholar 

  27. M. Nehse, J. Warnatz, C. Chevalier: Kinetic Modelling of the Oxidation of Large Aliphatic Hydrocarbons. 26 th Symposium (International) on Combustion, p.773. The Combustion Institute, Pittsburgh (1997).

    Google Scholar 

  28. G. Goyal, U. Maas, J. Warnatz: Simulation of the Transition from Deflagration to Detonation. SAE Transactions. Journal of Fuels and Lubricants 99, 1 (1990).

    Google Scholar 

  29. U. Maas, B. Raffel, J. Warnatz, J. Wolfrum: Ignition Processes and Minimum Ignition Energy in Hydrocarbon-Oxygen and Oxygen-Ozone Mixtures. 21 st Symposium (International) on Combustion, p. 1869. The Combustion Institute, Pittsburgh (1987).

    Google Scholar 

  30. B. Raffel, J. Warnatz, J. Wolfrum: Experimental Study of Laser-Induced Thermal Ignition in O2/O3 Mixtures. Appl. Phys. B37, 189 (1985).

    CAS  Google Scholar 

  31. U. Maas, J. Warnatz: Ignition in Hydrogen-Oxygen Mixtures and the Influence of the Constant Pressure Assumption, in: A.J. Kuhl, J.R. Bowen, J-C. Leyer, A. Borisov (eds.). Dynamics of Reactive Systems. Part I, p. 3, A.I.A.A. New York (1988).

    Google Scholar 

  32. J. Warnatz, M.D. Allendorf, R.J. Kee, M.E. Coltrin: A Model of Hydrogen-Oxygen Combustion on Flat-Plate Platinum Catalyst. Combust. Flame, 96, 393–406 (1994).

    Article  CAS  Google Scholar 

  33. F.N. Fritsch, J. Butland: SIAM J. Sci. Stat. Comput., 5,300 (1984).

    Article  Google Scholar 

  34. R. Richtmyer, K. Morton, in: L. Bers, R. Courant, J. Stoker (eds.). Interscience Tracts in Pure and Applied Mathematics No 4, 2nd edition (1967).

    Google Scholar 

  35. J. Warnatz: Detailed Studies of Combustion Chemistry. Proc. Contractors Meeting on EC Combustion Research, p. 172, EC. Bruxelles (1988).

    Google Scholar 

  36. U. Maas, J. Warnatz: Ignition Processes in Hydrogen-Oxygen Mixtures. Combust. Flame, 74, 53 (1988).

    Article  CAS  Google Scholar 

  37. J. Warnatz, U. Maas: Verbrennung. Springer, Heidelberg (1996); Combustion, Springer, Heidelberg (1996).

    Google Scholar 

  38. U. Maas, S. Pope: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space. Combust. Flame 88, 239 (1992).

    Article  CAS  Google Scholar 

  39. D. Schmidt, J. Segatz, U. Riedel, J. Warnatz, U. Maas: Simulation of Laminar Methane-Air Flames Using Automatically Simplified Chemical Kinetics. Comb. Sci. Technol. 113, 3 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Warnatz, J. (2000). Chemistry of Combustion Processes. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics