Skip to main content

Sulphur Chemistry in Combustion I

Sulphur in fuels and combustion chemistry

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

Abstract

Most fossil fuels contain sulphur and also biofuels and household waste have a sulphur content. As a consequence sulphur species will often be present in combustion processes. In this paper the fate and influence of fuel sulphur species in combustion will be treated. First a description of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garcia-Labiano, F., Hampartsoumian, E. and Williams A. (1995) Determination of sulphur release and its kinetics in rapid pyrolysis of coal, Fuel 74 No.7, 1072–1079.

    Article  CAS  Google Scholar 

  2. Gryglewicz, G. and Jasienko, S. (1992) The behaviour of sulphur forms during pyrolysis of low-rank coal, Fuel 71, 1225–1229.

    Article  CAS  Google Scholar 

  3. Sugawara, T., Sugawara, K., Nishiyama, Y. and Sholes, M.A. (1991) Dynamic behaviour of sulphur forms in rapid hydropyrolysis of coal, Fuel 70, 1091–1097.

    Article  CAS  Google Scholar 

  4. Davidson, R.M. (1993) Organic sulphur in coal, IEACR/60, IEA Coal Research, London.

    Google Scholar 

  5. Vernon, J.L. and Jones, T. (1993) Sulphur and coal, IEACR/57, IEA Coal Research, London.

    Google Scholar 

  6. Lawn, C.J. (1987) Principles of combustion engineering for boilers, Academic Press, London.

    Google Scholar 

  7. Couch, G.R. (1991) Advanced coal cleaning technology, IEACR/44, IEA Coal Research, London.

    Google Scholar 

  8. Speight, J.G. (1991) The chemistry and technology of petroleum, Marcel Dekker, Inc., New York.

    Google Scholar 

  9. Bowman, C.T. (1991) Chemistry of gaseous pollutant formation and destruction, in Bartok, W. and Sarofim, A.F. (eds.), Fossil fuel combustion, in chapter 4, 215–260.

    Google Scholar 

  10. Bassilikis, R., Zhao, Y. Solomon, P.R. and Serio, M.A. (1993) Sulphur and nitrogen evolution in the Argonne coals: Experiment and modelling, Energy & Fuels 7, 710–720.

    Article  Google Scholar 

  11. Khan, M.R. (1989) Prediction of sulphur distribution in products during low temperature coal pyrolysis and gasification, Fuel 68, 1439–1449.

    Article  CAS  Google Scholar 

  12. Cullis, C.F. and Mulcahy, M.F.R. (1972). The kinetics of combustion of gaseous sulphur compounds. Combust. Flame 18, 225–292.

    Article  CAS  Google Scholar 

  13. Müller III, C.H., Schofield, K., Steinberg, M., and Broida, H.P. (1979) Sulphur chemistry in flames. Seventeenth Symposium International on Combustion, 867–879, The Combustion Institute, Pittsburgh.

    Google Scholar 

  14. Wendt, J.O.L., Wootan, E.C., and Corley, T.L. (1983) Postflame behaviour of nitrogenous species in the presence of fuel sulphur. Combust. Flame 49, 261–274.

    Article  CAS  Google Scholar 

  15. Zachariah, M.R. and Smith, O.I. (1987) Experimental and numerical studies of sulphur chemistry in H2/O2/SO2 flames. Combust. Flame 69, 125–139.

    Article  CAS  Google Scholar 

  16. Frenklach, M., Lee, J.H., White, J,N., and Gardiner Jr., W.C. (1981) Oxidation of hydrogen sulfite. Combust. Flame 41, 1–16.

    Article  CAS  Google Scholar 

  17. Glarborg, P., Kubel, D., Dam-Johansen, K., Chiang, H.M., and Bozzelli, J.W. (1996). Impact of SO2 and NO on CO oxidation under post-flame conditions. Int.J.Chem.Kinet. 28, 773–790.

    Article  CAS  Google Scholar 

  18. Wendt, J.O.L. and Ekmann, J.M. (1975) Effect of fuel sulphur species on nitrogen oxide emission from premixed flames. Combust. Flame 25, 355–362.

    Article  CAS  Google Scholar 

  19. Hampartsoumian, E. and Nimmo, W. (1995) An experimental investigation of sulphur-nitrogen interactions in turbulent spray flames. Combust. Sci. Techn. 110, 487–504.

    Article  Google Scholar 

  20. Glarborg, P., Alzueta, M., Dam-Johansen, K., and Miller, J. A. (1998) Kinetic modelling of hydrocarbon/nitric oxide interactions in a flow reactor. Combust. Flame 115, 1–27.

    Article  CAS  Google Scholar 

  21. Dam-Johansen, K. and Østergaard, K. (1991) High-Temperature Reaction Between Sulphur Dioxide and Limestone. I. Comparison of Limestones in Two Laboratory Reactors and a Pilot Plant, Chem. Eng. Sci. 46, 827–837.

    Article  CAS  Google Scholar 

  22. Dam-Johansen, K. and Østergaard, K. (1991) High-Temperature Reaction Between Sulphur Dioxide and Limestone. II. An Improved Experimental Basis for a Mathematical Model, Chem. Eng. Sci. 46, 839–854.

    Article  CAS  Google Scholar 

  23. Dam-Johansen, K., Hansen, P.F.B., and Østergaard, K.(1991) High-Temperature Reaction Between Sulphur Dioxide and Limestone. III. A Grain-Micrograin Model and Its Verification, Chem. Eng. Sci. 46, 847–853.

    Article  CAS  Google Scholar 

  24. Dam-Johansen, K. and Østergaard, K. (1991) High-Temperature Reaction Between Sulphur Dioxide and Limestone. IV. A Discussion of Chemical Reaction Mechanisms and Kinetics, Chem. Eng. Sci. 46, 855–859.

    Article  CAS  Google Scholar 

  25. Takeshita, M. and Soud, H. (1993) FGD performance and experience on coal-fired plants, IEACR/58, IEA Coal Research, London.

    Google Scholar 

  26. Lyngfelt, A. and Leckner, B. (1998) Sulphur capture in circulating fluidised-bed boilers: decomposition of CaSO4 under local reducing conditions, J. Inst. Energy, 27–32.

    Google Scholar 

  27. Hansen, P.F.B., Dam-Johansen, K., and Østergaard, K. (1993) High-Temperature Reaction Between Sulphur Dioxide and Limestone. V. The Effect of Periodically Changing Oxidizing and Reducing Conditions, Chem. Eng. Sci. 48, 1325–1341.

    Article  CAS  Google Scholar 

  28. Hansen, P.F.B. (1993) Sulphur Capture in Fluidized Bed Combustors, Ph.D. thesis, Department of Chemical Engineering, Technical University of Denmark, 1993.

    Google Scholar 

  29. Dam-Johansen, K., Åmand, L-E., and Leckner, B. (1993) Influence of SO2 on the NO/N2O Chemistry in Fluidized Bed Combustion. 2. Interpretation of Full—Scale Observations Based on Laboratory Experiments, Fuel, 72 565–571.

    Article  CAS  Google Scholar 

  30. Johnsson, J.E. (1994) Formation and Reduction of Nitrogen Oxides in Fluidized Bed Combustion, Fuel 73, 1398–1415.

    Article  CAS  Google Scholar 

  31. Svoboda, K. Cerrnák, J. and Veselý, V. (1999) NOx Chemistry and Emissions, ibid.

    Google Scholar 

  32. Hansen, P.F.B., Dam-Johansen, K., Johnsson, J.E. and Hulgaard, T. (1992) Catalytic Reduction of NO and N2O on Limestone during Sulphur Capture under Fluidized Bed Combustion Conditions, Chem. Eng. Sci. 47, 2419–2424.

    Article  CAS  Google Scholar 

  33. Kiil, S., Bhatia, S.K., and Dam-Johansen, K. (1996) Modelling of Catalytic Oxidation of NH3 and Reduction of NO on Limestone during Sulphur Capture, Chem. Eng. Sci. 51, 587–601.

    Article  CAS  Google Scholar 

  34. Jensen, A. (1996) Nitrogen Chemistry in Fluidized Bed Combustion of Coal, Ph.D thesis, Department of Chemical Engineering, The Technical University of Denmark, 1996.

    Google Scholar 

  35. Jensen, A., Johnsson, J.E. and Dam-Johansen, K. (1993) Formation of Nitric Oxide and Nitrous Oxide From Heterogeneous Oxidation of Hydrogen Cyanide at Fluidized Bed Combustion Conditions, 12th International Conference on Fluidized Bed Combustion, L. Rubow and G. Commonwealth (Eds.), ASME, 447–454.

    Google Scholar 

  36. Glarborg, P., and Miller, J.A. (1994) Mechanism and Modelling of Hydrogen Cyanide Oxidation in a Flow Reactor, Combust. Flame 99, 475–483.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnsson, J.E., Glarborg, P. (2000). Sulphur Chemistry in Combustion I. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics