Skip to main content

Formation of Aromatics in Combustion Systems

  • Chapter
Pollutants from Combustion

Part of the book series: NATO Science Series ((ASIC,volume 547))

  • 477 Accesses

Abstract

Improving the knowledge of the chemistry responsible for the formation and consumption of aromatic compounds in combustion systems is an area of interest from both a fundamental and a practical standpoint. The former is essentially concerned with chemical reactions forming species that grow very rapidly to thousands of carbon atoms. This occurs as soon as the fuel is in excess and the temperature higher than 1400 K. It is now widely accepted that benzene and phenyl formation constitutes the first step in this growth process that lead to polycyclic aromatic hydrocarbons (PAH) and ultimately soot particles. In addition to a contribution to atmospheric pollution, the presence of soot strongly influences the radiative properties of flames. Many consequences are then related to radiation from the soot particles, such as intense heating of mechanical pieces in engines and gas turbines. When combustion is not used for energy production but occurs accidentally as in fires, radiative heat transfer is also crucial as a dominant propagating process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Homann K.H., Mochizuki, M. and Wagner H.Gg., (1963) Über den Reaktionsablauf in fetten Kohlenwasserstoff-Flammen, I, Zeit. Für Phys. Chem., 37, 299–313.

    Article  Google Scholar 

  2. Bonne U., Homann K.H., and Wagner H.Gg., (1965) Carbon Formation in Premixed Flames, Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 503–512.

    Google Scholar 

  3. Tompkins E.E. and Long, R. (1969), The Flux of Polycyclic aromatic Hydrocarbons and of Insoluble Material in Premixed Acetylene-Oxygen Flames., Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 625–634.

    Google Scholar 

  4. D’Alessio A., Di Lorenzo A, Beretta F. and Venitozzi C., (1973), Optical and Chemical Investigations on Fuel-Rich Methane-Oxygen Premixed Flames at Atmospheric Pressure, Fourteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 941–953.

    Google Scholar 

  5. Bittner J.D., and Howard, J.B., (1981) Composition profiles and Reaction mechanisms in a Near-Sooting Premixed benzene/Oxygen/Argon Flame, (1981), Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1105–1116.

    Google Scholar 

  6. Bockhom H., Fetting F. and Wenz H.W., (1983), Investigation of the Formation of High Molecular Hydrocarbons and Soot in Premixed Hydrocarbon-Oxygen Flames. Ber Bunsenges. Phys. Chem. 87, 1067–1073.

    Article  Google Scholar 

  7. Prado G., Garo A. KO A. and Sarofim A., (1984) Polyclic Aromatic Hydrocarbons Formation and Destruction in a Laminar Diffusion Flame, Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 989–996.

    Google Scholar 

  8. Smyth K.C., Houston Miller J. Dorfman R.C., Mallard W.G. and Santoro R.J., (1985), Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles, Comb. And Flame, 62, 157–181.

    Article  CAS  Google Scholar 

  9. Bastin E., Delfau XL., Reuillon M. and Vovelle, C. (1987), Analyse par spectrométrie de masse de la structure d’une flamme de diffusion C2H2/O2/Ar. Journal de Chimie Physique, 84, 415–420.

    CAS  Google Scholar 

  10. Brezinski K., Burke E.J. and Glassman L., (1984), The High Temperature of Butadiene, Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 613–622.

    Google Scholar 

  11. Colket III M.B., (1986) The Pyrolysis of Acetylene and Vinylacetylene in a Single-Pulse Shock Tube. Twenty First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 851–864.

    Google Scholar 

  12. Kern R.D., Singh H.J. and Wu C.H., (1988), Thermal Decomposition of 1,2 Butadiene, Int. J. of Chem. Kin., 20, 731–747.

    Article  CAS  Google Scholar 

  13. Frenklach M., Clary D.W., Gardiner Jr W.C. and Stein S.E., (1984), Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene, Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 887–901.

    Google Scholar 

  14. Cole J.A, Bittner J.D., Longwell J.P. and Howard J.B. (1984), Formation of Aromatic Compounds in Aliphatic Flames, Comb. And Flame, 56, 51–70.

    Article  CAS  Google Scholar 

  15. Frenklach M. and Wamatz J., (1987), Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame, Combust. Sci. And Technol., 51, 265–283.

    Article  CAS  Google Scholar 

  16. Harris S.J., Weiner AM. and Blint R., (1988), Formation of Small Aromatic Molecules in a Sooting Ethylene Flame, Comb. And Flame, 72, 91–109.

    Article  CAS  Google Scholar 

  17. Colket III M.B., Seery DJ. and Palmer H.B., (1989), The Pyrolysis of Acetylene Initiated by Acetone, Comb. And Flame, 75, 343–366.

    Article  CAS  Google Scholar 

  18. Westmoreland P.R. and Dean AM., (1989), Forming benzene in Flames by Chemically Activated Isomerization, J. of Phys. Chem., 93, 8171–8180.

    Article  CAS  Google Scholar 

  19. Stein S.E., Walker J.A., Suryan M.M. and Fahr A., (1990), A New Path to Benzene in Flames, Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 85–90.

    Google Scholar 

  20. Pfefferle L.D., Boyle J. and Bermudez G., 1991, Benzene Formation during Allene Pyrolysis: Possible Implications for Soot Formation, Preprints of Papers presented at 202nd National Meeting, New York, Vol 36, 4, 1433–1439.

    CAS  Google Scholar 

  21. Westmoreland P.R., (1986), Experimental and Theoretical Analysis of Oxidation and Growth Chemistry in a Fuel-Rich Acetylene Flame., PhD Thesis, Massachusetts Institute of technology.

    Google Scholar 

  22. Bastin E., Delfau J.L., Reuillon M. and Vovelle C., (1988), Experimental and Computational Investigation of the Structure of a Sooting C2H2-O2-Ar Flame, Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 213–322.

    Google Scholar 

  23. Miller J.A and Melius C.F., (1991), The Formation of benzene in Flames, Preprints of Papers presented at 202nd National Meeting, New York, Vol 36, 4, 1440–1446.

    CAS  Google Scholar 

  24. Miller J.A. and Melius C.F., (1992), Kinetic and Thermodynamic Issues in the Formation of Aromatic Compounds in Flames of Aliphatic Fuels, Comb. And Flame, 91, 21–39.

    Article  CAS  Google Scholar 

  25. Seshadri K., Mauss F., Peters N. and Warnatz, J., (1990), A Flamelet calculation of Benzene Formation in Coflowing Laminar Diffusion Flames., Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 559–566.

    Google Scholar 

  26. Douté C, Delfau J.L. and Vovelle C., (1994), Reaction Mechanism for Aromatics Formation in a Low Pressure, Premixed Acetylene-Oxygen-Argon Flame, 103, 153–173.

    Google Scholar 

  27. Wu C.H. and Kern R.D., (1987), Shock-Tube Study of Allene Pyrolysis. J. Phys. Chem., 91, 6291–6296.

    Article  CAS  Google Scholar 

  28. Leung K.M. and Lindstedt R.P., (1995), Detailed Kinetic Modeling of C1-C3 Alkane Diffusion Flames, Comb, and Flame, 102, 129–160.

    Article  CAS  Google Scholar 

  29. Tsuji H. and Yamaoka L., (1969), The Structure of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder, Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 997–1005.

    Google Scholar 

  30. Tsuji H. and Yamaoka I., (1971), Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder, Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 723–731.

    Google Scholar 

  31. Lindstedt R.P. and Skevis G., (1996), Benzene Formation Chemistry in Premixed 1,3-Butadiene Flames, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 703–709.

    Google Scholar 

  32. Lindstedt R.P. and Skevis G., (1997), Chemistry of Acetylene Flames, Combust. Sci. and technology, 125, 73–137.

    Article  CAS  Google Scholar 

  33. Vandooren J. and Van Tiggelen P.J., (1976), Reaction mechanisms of Combustion in Low Pressure Acetylene-Oxygen Flames, Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 1133.

    Google Scholar 

  34. Miller J.A., Volponi J.V., Durant J.L., Goldsmith J.E.M., Fisk G.A. and Kee R.J. (1990), The Structure and reaction mechanism of Rich, Non-Sooting C2H2/O2/Ar Flames. Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 187–194.

    Google Scholar 

  35. Dryer F.L. and Brezinski K. (1986), A Flow reactor Study of the Oxidation of n-octane and iso-octane. Combust. Sci. and Technol., 45, 199.

    Article  CAS  Google Scholar 

  36. Chakir A., Bellimam M., Boettner J.C and Cathonnet M., (1992), Kinetic Study of n-heptane Oxidation. Int. J. Chem. Kinet, 24, 385.

    Article  CAS  Google Scholar 

  37. Dagaut P., Reuillon M. and Cathonnet M., (1994), High Pressure Oxidation of Liquid Fuels From Low to High tempertaure. 1. N-Heptane and iso-Octane. Combust. Sci. and Technol., 95, 233.

    Article  CAS  Google Scholar 

  38. Abdel-Khalid S.I., Tamara T., El-Wakil M., (1975), A Chromatographie Study of the Diffusion Flame Around a Simulated Fuel Drop. Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 389.

    Google Scholar 

  39. Hamins A. and Seshadri K., (1987), The Structure of Diffusion Flames Burning Pure, Binary and Ternary Solutions of Methanol, Heptane and Toluene, Comb. And Flame, 68, 295.

    Article  CAS  Google Scholar 

  40. Bui-Pham M. and Seshadri K., (1991), Comparaison Between Experimental Measurements and Numerical calculations of the Structure of Heptane-Air Diffusion Flames. Combust. Sci. And Technol., 79, 293–310.

    Article  CAS  Google Scholar 

  41. Axelsson E.I. and Rosengren L.G., (1985), iso-Octane Combustion in a Flat Flame. Comb, and Flame, 62, 91.

    Article  CAS  Google Scholar 

  42. Douté C, Delfau J.L., Akrich R. and Vovelle C., (1997), Experimental Study of the Chemical Structure of Low-Pressure Premixed n-Heptane-O2-Ar and iso-Octane-O2-Ar Flames., Combust. Sci. And Technol., 124, 249–276.

    Article  Google Scholar 

  43. El Bakali A., Delfau J.L. and Vovelle C., (1998), Experimental Study of 1 Atmosphere, Rich, Premixed n-Heptane and iso-Octane Flames. Combust. Sci. and Technol., in press.

    Google Scholar 

  44. Douté C, Delfau J.L. and Vovelle C., (1997), Modeling of the Structure of a Premixed n-Decane Flame., Combust Sci. And Technol., 130, 269–313.

    Article  Google Scholar 

  45. Venkat C, Brezinski K. and Glassman I., (1982), High temperature Oxidation of Aromatic Hydrocarbons, Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 143–152.

    Google Scholar 

  46. Lovell A.B., Brezinski K. and Glassman I., (1988), Benzene Oxidation Perturbed by NO2 Addition, Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1063–1074.

    Google Scholar 

  47. Bittker D.A., (1991), Detailed Reaction Mechanism for Oxidation of Benzene, Combust. Sci. And Technol., 79, 49–72.

    Article  CAS  Google Scholar 

  48. Burcat A., Zeleznik FJ. and Brabbs B.J., (1986), Ignition Delay Times of Benzene and Toluene with Oxygen in Argon Mixtures, NASA-Technical Memorandum 87312.

    Google Scholar 

  49. Brezinski K., (1986), The High Temperature Oxidation of Aromatic Compounds, Prog. Energy Combust. Sci., 12, 1.

    Article  Google Scholar 

  50. Chevalier C. and Warnatz J., (1991), A Tentative Detailed Mechanism Scheme for the Oxidation of Benzene-Air Mixtures, Division of Fuel Chemistry, American Chemical Society, New York, 36(4), 1486–1493.

    Google Scholar 

  51. Fujii N. and Asaba T., (1977), J. Fac. of Eng. Univ. of Tokyo (B) XXXIV, No 1, 189.

    Google Scholar 

  52. Gibbs, GJ. and Calcote H.F., (1959), J. Chem and Eng. Data 4, 226–237.

    Article  CAS  Google Scholar 

  53. Emdee J.L., Brezinski K. and Glassman I., (1992), A Kinetic Model for the Oxidation of Tolouene near 1200K., J. Phys. Chem., 96, 2151–2161.

    Article  CAS  Google Scholar 

  54. Lindstedt R.P. and Skevis G., (1994), Detailed Reaction mechanism of premixed benzene Flames, Combust, and Flame, 99, 551–561.

    Article  CAS  Google Scholar 

  55. Zhang H.Y. and McKINNON J.T., (1995), Elementary Reaction Modeling of High-Temperture Benzene Combustion, Combust. Sci. and Technol., 107, 261–300.

    Article  CAS  Google Scholar 

  56. Tan Y. and Frank P., (1996), A Detailed Comprehensive Kinetic Model for benzene Oxidation using the Recent Kinetic Results, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 677–684.

    Google Scholar 

  57. Frank P., Herzler J., Just Th. and Wahl C., (1994), Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 833–840.

    Google Scholar 

  58. Goloniva E.S. and Fyodorov G.G., (1956), Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 88–96.

    Google Scholar 

  59. Davis S.G., Wang H., Brezinski K. and Law C.K., (1996), Laminar Flame Speeds and Oxidation Kinetics of Benzene-Air and Toluene-Air Flames, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1025–1033.

    Google Scholar 

  60. Astholz D.C., Durant J. and Troe I., (1981), Thermal Decomposition of Toluene and of Benzyl Radicals in Shock Waves, (1981), Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 885–892.

    Google Scholar 

  61. Kern R.D., Singh, HJ., Esslinger M.A and Winkeler, (1982), Product Profiles Observed During The Pyrolysis of Toluene, Benzene, Butadiene and Acetylene, Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1351–1358.

    Google Scholar 

  62. Singh HJ. and Kern R.D., (1983), Pyrolysis of Benzene behind Reflected Shock Waves, Combust, and Flame, 54, 49–59.

    Article  CAS  Google Scholar 

  63. Rao V.S. and Skinner G.B., (1984), Formation of D and H atoms in the Pyrolysis of Benzene-d6 and Cholorobenzene behind Shock Waves, J. Phys. Chem., 88, 5990–5995.

    Article  CAS  Google Scholar 

  64. Kiefer J.H., Mizerka L.J. Patel M.R. and Wei H.C., (1985), A Shock Tube Investigation of Major Pathways in the High Temperature Pyrolysis of Benzene, J. Phys. Chem., 89, 2013–2019.

    Article  CAS  Google Scholar 

  65. Braun-Unkhoff, Frank P. and Just Th, (1988), A Shock Study on The Thermal Decomposition of Toluene and of the Penyl Radical at High Temperatures, Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1053–1061.

    Google Scholar 

  66. Laskin A. and Lifshitz A., (1996), Thermal Decomposition of Benzene. Single-Pulse Shock Tube Investigation, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 669–675.

    Google Scholar 

  67. Alkemade, U. and Homann, K.H. (1989), Formation of C6H6 Isomers by Recombination of Propynyl in the System Sodium Vapour/Propynylhalide, Zeitschrift fur Physikalische Chemie Neue Folge, Bd, 161, 19–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vovelle, C., Delfau, J.L. (2000). Formation of Aromatics in Combustion Systems. In: Vovelle, C. (eds) Pollutants from Combustion. NATO Science Series, vol 547. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4249-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4249-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6135-0

  • Online ISBN: 978-94-011-4249-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics