Skip to main content

Finsler Geometry Inspired

  • Chapter
  • 341 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 109))

Abstract

We start with an arbitrary metric d(x, \(\tilde x\)) on a differentiable manifold M. (In this note differentiability is always assumed.) For any tangent vector 0 ≠ yT x M we choose a curve γ : IM with \(\dot \gamma (0) = y\). Consider the function

$$L(x,y) = \mathop {\lim }\limits_{t \to 0} \frac{{d(x,\gamma (t))}}{t}$$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, P.L., Matsumoto, M. and Ingarden, R.S. (1993) The Theory of Sprays and Finsler Geometry with Applications in Physics and Biology, Kluwer, Dordrecht.

    Google Scholar 

  2. Barthel, W. (1953) Über eine Parallelverschiebung mit Längeninvarianz in lokal-Minkowskishen Räumen I, II, Arch. Math., 44, 346–365.

    Article  MathSciNet  Google Scholar 

  3. Busemann, H. (1955) The Geometry of Geodesics, Academic Press, New York.

    MATH  Google Scholar 

  4. Chern, S.S. (1996) Finsler Geometry is Just Riemannian Geometry Without Quadratic Restrictions, Notices of AMS, 46, 9.

    MathSciNet  Google Scholar 

  5. Kozma, L. and Baran, S. (1996) On Metrical Homogeneous Connections of a Finsler Point Space, Publ. Math. Debrecen, 49, 76–83.

    MathSciNet  Google Scholar 

  6. Matsumoto, M. (1989) A Slope of a Mountain is a Finsler Surface with Respect to a Time Measure, J. Math. Kyoto Univ., 29, 17–25.

    MathSciNet  MATH  Google Scholar 

  7. Matsumoto, M. (1986) Foundations of Finsler Geometry and Special Finsler Spaces, Kaishesha, Saikawa, Ōtsu.

    MATH  Google Scholar 

  8. Tamássy, L. (1993) Area and Curvature in Finsler Spaces, Reports on Math. Physics, 33, 233–239.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kozma, L., Tamássy, L. (2000). Finsler Geometry Inspired. In: Antonelli, P.L. (eds) Finslerian Geometries. Fundamental Theories of Physics, vol 109. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4235-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4235-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5838-4

  • Online ISBN: 978-94-011-4235-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics