Skip to main content

Part of the book series: Space Science Series of ISSI ((SSSI,volume 8))

Abstract

Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 01 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar (D/H)H2O ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth’s oceans. The cometary 0/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary (D/H)H2O ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • A’hearn, M.F., and Feldman, P.D.: 1985, In Ices in the Solar System (Klinger, J., Benest, D., and Smoluchowski, R., Eds.), pp. 463–471, D. Reidel Publishing Company, Dordrecht (USA).

    Chapter  Google Scholar 

  • A’hearn, M.F., Schleicher, D.G., and West, R.A.: 1985, Astrophys. J. 297, 826–836.

    Article  ADS  Google Scholar 

  • Aikawa, Y., Umebayashi, T., Nakano, T., and Miyama, S.M.: 1997. Astrophys. J. Lett. 486, L51–L54.

    Article  ADS  Google Scholar 

  • Balsiger, H., Altwegg, K., and Geiss, J.: 1995, J. Geophys. Res. 100, 5827–5834.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Gautier, D., Lis, D.C., Young, K., Keene, J., Phillips, T., Owen, T., Crovisier, J., Goldsmith, P.F., Bergin, E.A., Despois, D., and Wootten, A.: 1998, Icarus 133, 147–162.

    Article  ADS  Google Scholar 

  • Brown, P.D., and Millar, T.J.: 1989, Mon. Not. R. Astron. Soc. 237, 661–671.

    ADS  Google Scholar 

  • Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., de Graaw, Th., Bjoraker, G.L., Samuelson, R.E., Gautier, D., Feuchgruber, H., Kessler, M.F., and Orton, G.S.: 1998, Bul. Am. Astron. Soc. 30, 1060.

    ADS  Google Scholar 

  • Crovisier, J., Bockelée-Morvan, D., Colom, P., Despois, D., and Paubert, G.: 1993, Astron. Astrophys. 269, 527–540.

    ADS  Google Scholar 

  • Crovisier, J., Leech, K., Bockelée-Morvan, D., Brooke, T.Y., Hanner, M.S., Altieri, B., Keller, H.U., and Lellouche, E.: 1997, Science 275, 1904–1907.

    Article  ADS  Google Scholar 

  • Crovisier, J.: 1998, Bul. Am. Astron. Soc. 30, 1059–1060.

    ADS  Google Scholar 

  • Delsemme, A.H.: 1998, Planet Space Sci., in press.

    Google Scholar 

  • Deloule, E., Doukhan, J.-P., and Robert, F.: 1997, Proc. Lunar Planet. Sci. Conf. 28th, 291-292.

    Google Scholar 

  • Duncan, M., Quinn, T., and Tremarne S.: 1987, Astron. J. 94, 1330–1338.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Meier, R., Krankowsky, D., and Hodges, R.R.: 1994, Astron. Astrophys. 288, 315–329.

    ADS  Google Scholar 

  • Eberhardt P., Reber, M., Krankowsky, D., and Hodges, R.R.: 1995, Astron. Astrophys. 302, 301–316.

    ADS  Google Scholar 

  • Eberhardt, P.: 1999, In Proc. IAU Colloq. 168, Cometary Nuclei in Space and Time (A’hearn, M.F., Ed.), Astron. Soc. Pacific Conf. Ser., in press.

    Google Scholar 

  • Epstein, R.I., Lattimer, J.M., and Schramm, D.N.: 1976, Nature 263, 198–202.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr., and Prinn, R.G.: 1989, In The formation and evolution of planetary systems (Weaver, H.A., and Danly, L., Eds.), pp. 171–211, Cambridge U. Press, Cambridge (UK).

    Google Scholar 

  • Feuchtgruber, H., Lellouch, E., Bézard, B., Encrenaz, Th., de Graaw, Th., and Davis, G.R.: 1999, Astron. Astrophys. 341, L17–L21.

    ADS  Google Scholar 

  • Gautier D. and Morel, P.: 1997, Astron. Astrophys. 323, L9–L12.

    ADS  Google Scholar 

  • Gautier, D.: 1999, In Planetary systems: The long view (Celnikier, L., Ed.), in press, Blois (France).

    Google Scholar 

  • Geiss, J., and Reeves, H.: 1981, Astron. Astrophys. 93, 189–199.

    ADS  Google Scholar 

  • Geiss, J.: 1993, In Origin and evolution of the elements (Prantzos, N., Vangioni-Flam, E., and Cassé, M., Eds.), pp. 87–106, Cambridge Univ. Press, Cambridge (UK).

    Google Scholar 

  • Greenberg, M., and Li, A.: 1999, Space Sci. Rev., this volume.

    Google Scholar 

  • Griffith, C.A., and Zahnle, K.: 1995, J. Geophys. Res. 100, 16, 907–916, 922.

    Google Scholar 

  • Griffin, M.J., et al.: 1996, Astron. Astrophys. 315, L389–L392.

    ADS  Google Scholar 

  • Grinspoon, D.H. and Lewis J.S.: 1988, Icarus 72, 430–436.

    Article  ADS  Google Scholar 

  • Hubbard, W.B., and MacFarlane, J.J.: 1980, Icarus 127, 307–318.

    Google Scholar 

  • Hubbard, W.B., Podolak, M., and Stevenson, D.J.: 1995, In Neptune and Triton (Cruikshank, D.P., Ed.), pp. 109–140, U. of Arizona Press, Tucson (USA).

    Google Scholar 

  • Irvine, W.M., Bergin, E.A., Dickens, J.E., Jewitt, D., Lovell, A.J., Matthews, H.E., Schloerb, F.P., and Senay, M.: 1998, Nature 393, 547–550.

    Article  ADS  Google Scholar 

  • Jessberger, E.: 1999, Space Sci. Rev., this volume.

    Google Scholar 

  • Klinger, J., Eich, G., Bischoff, A., Joó, F., Kochan, H., Roessler, K., Stichler, W., and Stöeffler, D.: 1989, Adv. Space Res. 9(3), 123–125.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A., Mumma, M.J., Abbott, M., Flynn, B.C., Meech, K.J., Yeomans, D.K., Feldman, P.D., and Cosmovici, C.B.: 1997, Science 277, 1488–1491.

    Article  ADS  Google Scholar 

  • Lécluse, C., and Robert, F.: 1994, Geochim. Cosmochim. Acta 58, 2927–2939.

    Article  ADS  Google Scholar 

  • Lunine, J.I., Engle, S., Riszk, B., and Horanyi, M.: 1991, Icarus 94, 333–344.

    Article  ADS  Google Scholar 

  • Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., and Niemann, H.B.: 1998. Space Sci. Rev. 84, 251–263.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, T.C., Matthews, H.E., Jewitt, D.C., Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, Science 279, 842–844.

    Article  ADS  Google Scholar 

  • Meier, R., Owen, T.C., Jewitt, D.C., Matthews, H.E., Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, Science 279, 1707–1710.

    Article  ADS  Google Scholar 

  • Meier, R., Wellnitz, D., Kim, S.J., and A’hearn, M.F.: 1998c, Icarus 136, 268–279.

    Article  ADS  Google Scholar 

  • Millar, T.J., Bennett, A., and Herbst, E.: 1989, Astrophys. J. 340, 906–920.

    Article  ADS  Google Scholar 

  • Mumma, M.J., Weissman, P.R., and Stern, S.A.: 1993, In Protostars and planets III, (Levy, E.H., and Lunine, J.I., Eds.), pp. 1177–1252, U. of Arizona Press, Tucson (USA).

    Google Scholar 

  • Mumma, M.J., DiSanti, M.A., Dello Russo, N., Fomenkova, M., Magee-Sauer, K, Kaminski, C.D., and Xie, D.X.: 1996, Science 272, 1310–1314.

    Article  ADS  Google Scholar 

  • Notesco, G., Laufen, G., and Bar-Nun, A.: 1997, Icarus 125, 471–473.

    Article  ADS  Google Scholar 

  • Owen, T.C., and Bar-Nun, A.: 1995, Icarus 116, 215–226.

    Article  ADS  Google Scholar 

  • Owen, T.C.: 1997, In From Stardust to planetesimals (Pendleton, Y.J., and Tielens, A.G.G.M., Eds.), pp. 435–450, Astron. Sci. Pacific Public. 122, San Francisco (USA).

    Google Scholar 

  • Podolak, M., Weizman, A., and Marley, M.: 1995, Planet. Space Sci. 43, 1517–1522.

    Article  ADS  Google Scholar 

  • Pringle, J.E.: 1981, Ann. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Schleicher, D.G., and A’hearn, M.F.: 1986, In New insights in astrophysics. Eight years of UV astronomy with WE (Rolfe, E.J., Ed.), pp. 31-33, ESA SP-263, ESA, Paris (France).

    Google Scholar 

  • Wagoner, R.V., Fowler, W.A., and Hoyle, F.: 1967, Astrophys. J. 148, 3–49.

    Article  ADS  Google Scholar 

  • Willacy, K., Klahr, H.H., Millar, T.J., and Henning, Th.: 1998, Astron. Astrophys. 338, 995–1005.

    ADS  Google Scholar 

  • Williams, T.L., Adams, N.G., Lucia, M.B., Herd, Ch.R., and Geoghegan, M.: 1996. Mon. Not. R. Astron. Soc. 282, 413–420.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Meier, R., Owen, T.C. (1999). Cometary Deuterium. In: Altwegg, K., Ehrenfreund, P., Geiss, J., Huebner, W.F. (eds) Composition and Origin of Cometary Materials. Space Science Series of ISSI, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4211-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4211-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5830-8

  • Online ISBN: 978-94-011-4211-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics