Bioaccumulation test with Tubificid Sludgeworms in artificial media development of a standardisable method

  • Philipp Egeler
  • J. Römbke
  • M. Meller
  • Th. Knacker
  • R. Nagel
Part of the Developments in Hydrobiology book series (DIHY, volume 139)


Lipophilic chemicals entering aquatic ecosystems often tend to adsorb to sediments. Although often not bioavailable to pelagic organisms, these compounds can be subject to bioaccumulation and thus pose a potential threat for sediment-dwelling organisms. The assessment of bioaccumulation is currently based on the extrapolation of fish bioconcentration data. Thus, measuring the bioaccumulation in benthic organisms gives more detailed information on the hazard of chemicals for aquatic ecosystems. The freshwater tubificids Tubifex tubifex and Limnodrilus hoffmeisteri were chosen as test organisms. Breeding of the oligochaetes as well as bioaccumulation studies were carried out in a system consisting of artificial sediment and reconstituted water. 14C-lindane (γ-hexachlorocyclohexane, γ-HCH) and 14C-hexachlorobenzene (HCB) served as model substances. Additionally, 14C-3,4-dichloroaniline (3,4-DCA) was tested. Uptake and elimination of lindane and HCB were examined. Bioaccumulation factors (BAF) were determined from the ratio of concentration in oligochaete tissue to concentration in sediment. The tubificids accumulated 14C-lindane, 14C— HCB, and 14C-3,4-DCA by factors of 4.7 (mean value; n = 4), 6.6 (mean value; n = 4) and 13.2, respectively, based on wet weight and radioactive concentrations. No major metabolites were detected in worms, sediment and water. Elimination kinetics were examined for 14C-lindane and 14C-HCB. When transferred to clean sediment, the worms eliminated both test substances rapidly and nearly completely. The tubificid bioaccumulation factors are contrasted with corresponding fish bioconcentration factors from literature. The presented data indicate once more that the assessment of bioaccumulation based exclusively on lipophilicity and on the extrapolation of fish bioconcentration data to other organisms or environmental compartments is not appropriate.

Key words

tubificidae bioaccumulation artificial sediment risk assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM, 1995. Standard guide for determination of the bioaccumulation of sediment— associated contaminants by benthic invertebrates. American Society for Testing and Materials, E 1688-95.Google Scholar
  2. Brinkhurst, R. O., 1980. Taxonomy, pollution and the sludge worm. Marine Pollution Bulletin 11: 248–251.CrossRefGoogle Scholar
  3. BUA, 1994. 2,4-Dichloranilin, 2,5-Dichloranilin und 3,4-Dichloranilin. BUA-Stoffbericht 140. Hrsg.: Beratergremium für umweltrelevante Altstoffe (BUA) der Gesellschaft Deutscher Chemiker. Hirzel, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  4. Chapman, P. M. & R. O. Brinkhurst, 1984. Lethal and sublethal tolerances of aquatic oligochaetes with reference to their use as a biotic index of pollution. Hydrobiologia 115: 139–144.CrossRefGoogle Scholar
  5. Egeler, Ph., J. Römbke, M. Meiler, Th. Knacker, C. Franke, G. Studinger & R. Nagel, 1997. Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere 35: 835–852.CrossRefGoogle Scholar
  6. EU, 1996. Technical Guidance Documents in support of the Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, and the Commission Regulation (EC) 1488/94 on Risk Assessment for Existing Substances.Google Scholar
  7. Franke, C., G. Studinger, G. Berger, S. Böhling, U. Bruckmann, D. Cohors-Fresenborg & U. Jöhnke, 1994. The assessment of bioaccumulation. Chemosphere 29: 1501–1514.CrossRefGoogle Scholar
  8. Füll, C., 1996. Bioakkumulation und Metabolismus von γ-l,2,3,4,5,6-Hexachlorcyclohexan (Lindan) und 2, 4-(2, 4-Dichlorphenoxy)-Propionsäure (Dichlorprop) beim Regenwurm Lumbricus rubellus (Oligochaeta, Lumbricidae). PhD-Thesis, Johannes Gutenberg-University Mainz.Google Scholar
  9. Giesy, J. P. & R. A. Hoke, 1989. Freshwater sediment toxicity bioassassment: Rationale for species selection and test design. J. Great Lakes Res. 15:539–569.CrossRefGoogle Scholar
  10. Ingersoll, C. G., G. T. Ankley, D. A. Benoit, E. L. Brunson, G. A. Burton, F. J. Dwyer, R. A. Hoke, P. F. Landrum, T. J. Norberg-King & P. V. Winger, 1995. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Envir. Toxicol. Chem. 14: 1885–1894.CrossRefGoogle Scholar
  11. Kalsch, W., R. Nagel & K. Urich, 1991. Uptake, elimination, and bioconcentration of ten anilines in zebrafish (Bmchydanio rerio). Chemosphere 22: 351–363.CrossRefGoogle Scholar
  12. Kennedy, C. R., 1966. The life history of Limnodrilus hoffmeisteri Clap. (Oligochaeta, Tubificidae) and its adaptive significance. Oikos 17: 158–168.CrossRefGoogle Scholar
  13. Klerks, P. L. & P. R. Bartholomew, 1991. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquatic Toxicology: 19: 97–112.CrossRefGoogle Scholar
  14. Kosiorek, D., 1974. Development cycle of Tubifex tubifex Müll. in experimental culture. Pol. Arch. Hydrobiol. 21: 411–422.Google Scholar
  15. Kukkonen, J. & P. F. Landrum, 1994. Toxicokinetics of sediment-associated Pyrene to Lumbriculus variegatus (Oligochaeta). Envir. Toxicol. Chem. 13: 1457–1468.CrossRefGoogle Scholar
  16. Lotufo, G. R. & J. W. Fleeger, 1996. Toxicity of sediment-associated Pyrene and Phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae). Envir. Toxicol. Chem. 15: 1508–1516.Google Scholar
  17. McMurtry, M. J., D. J. Rapport & K. E. Chua, 1983. Substrate selection by tubificid oligochaetes. Can. J. Fish. aquat. Sci. 40: 1639–1646.CrossRefGoogle Scholar
  18. Melier, M., Ph. Egeler., J. Römbke, H.-J. Schallnass, R. Nagel & B. Streit, 1998. Short-term toxicity of lindane, hexachlorobenzene and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotoxicol. Environ. Saf. 39: 10–20.CrossRefGoogle Scholar
  19. Nagel, R., 1988. Umweltchemikalien und Fische — Beiträge zu einer Bewertung. Habilitation Thesis, Johannes Gutenberg-Universität Mainz.Google Scholar
  20. Neely, W. B., D. R. Branson & G. E. Blau, 1974. Partition Coefficient to measure Bioconcentration Potential of Organic Chemicals in Fish. Envir. Sci. Technol. 8: 1113–1115.CrossRefGoogle Scholar
  21. OECD, 1984. Earthworm, acute toxicity test. Guideline No. 207. Paris.Google Scholar
  22. OECD, 1992. Fish, cute toxicity test. Guideline No. 203. Paris.Google Scholar
  23. OECD, 1996. Bioconcentration: Flow-through fish test. Guideline No. 305. Paris.Google Scholar
  24. Oliver, B. G., 1987. Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Envir. Sci. Technol. 21: 785–790.CrossRefGoogle Scholar
  25. Reynoldson, T. B., 1987. Interactions between sediment contaminants and benthic organisms. Hydrobiologia 146: 53–66.CrossRefGoogle Scholar
  26. Reynoldson T. B., D. Van de Valk, L. Stervoski & S. Thompson, 1989. Uptake and depuration of 14C-labelled organic contamin ants by oligochaeta: development of methods. Pers. communication (1996), unpublished data.Google Scholar
  27. Reynoldson T. B., S. P. Thompson & J. L. Bamsey, 1991. A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Envir. Toxicol. Chem. 10: 1061–1072.Google Scholar
  28. Rippen, G., 1991. Handbuch der Umweltchemikalien: Physikalischchemische und ökotoxikologische Daten ausgewählter chemischer Stoffe. Ecomed Verlagsgesellschaft, Landsberg.Google Scholar
  29. Schmitz, A., 1997. Bioakkumulation und Verteilung von 3,4-Dichloranilin und alpha-Endosulfan in aquatischen Laborsystemen — ein Vergleich zwischen Einzelspezies — und Mikrokosmos-Experimenten. Dissertation, Johannes Gutenberg-Universität Mainz.Google Scholar
  30. Spacie, A. & J. L. Hamelink, 1982. Alternative models for describing the bioconcentration of organics in fish. Envir. Toxicol. Chem. 1:309–320.CrossRefGoogle Scholar
  31. Suedel, B. C. & J. H. Rodgers, Jr., 1994. Development of formulated reference sediments for freshwater and estuarine sediment testing. Envir. Toxicol. Chem. 13: 1163–1175.CrossRefGoogle Scholar
  32. Timm, T., 1974. On the life cycles of the aquatic oligochaeta in aquaria. Inst. Zool. Bot. Acad. Sci. Est. SSR Hydrobiol. Investigations 6: 97–118.Google Scholar
  33. U.S. EPA, 1995. Great Lakes Water Quality Initiative Technical Support Document for the procedure to determine bioaccumulation factors. EPA 820-8-95-005.Google Scholar
  34. Wachs, B., 1967. Die Oligochaeten-Fauna der Fließgewässer unter besonderer Berücksichtigung der Beziehung zwischen der Tubificiden-Besiedlung und dem Substrat. Arch. Hydrobiol. 63: 310–386.Google Scholar
  35. Walsh, G. E, D. E. Weber, L. K. Esry, M. T. Nguyen, J. Noles & B. Albrecht, 1992. Synthetic substrata for propagation and testing of soil and sediment organisms. Pedobiologia 36: 1–10.Google Scholar
  36. Whitten, B. K & C. L. Goodnight, 1966. The comparative chemical composition of two aquatic oligochaetes. Comp. Biochem. Physiol. 17: 1205–1207.Google Scholar
  37. Wiederholm T., A. M. Wiederholm & G. Milbrink (1987). Bulk sediment bioassays with five species of fresh-water oligochaetes. Wat. Air Soil Pollut. 36: 131–154.CrossRefGoogle Scholar
  38. Wirth, H., 1985. Zur Sorption von 14C-markiertem γ-Hexachlorcyclohexan (Lindan) im ng/L-Bereich an geogenen Adsorbern. GKSS-Forschungszentrum Geesthacht GmbH, Report No. GKSS 85/E/30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Philipp Egeler
    • 1
  • J. Römbke
    • 1
  • M. Meller
    • 1
  • Th. Knacker
    • 1
  • R. Nagel
    • 2
  1. 1.ECT Oekotoxikologie GmbHFlörsheimGermany
  2. 2.Institut f. HydrobiologieTechnische Universität DresdenDresdenGermany

Personalised recommendations