Skip to main content

Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR

  • Chapter
Book cover Molecular Ecology of Aquatic Communities

Part of the book series: Developments in Hydrobiology ((DIHY,volume 138))

Abstract

Accurate taxonomic identification of species at all life stages is critical to understand and predict the processes that together determine marine community dynamics. However, Zooplankton assemblages may include numerous sibling and congeneric species distinguished by subtle morphological characteristics. Molecular systematic databases, including DNA sequences of homologous gene regions for selected taxonomic groups, allow the design of rapid protocols to determine species’ diversity and identify individuals. In this study, the DNA sequence of a 300 base-pair region of the mitochondrial cytochrome oxidase I (COI) gene was determined for eight species of three genera of calanoid copepods: Calanus finmarchicus, C. glacialis and C. helgolandicus; Neocalanus cristatus, N. flemingeri and N. plumchrus; and Pseudocalanus moultoni and P. Newmani. The DNA sequences differed between congeneric species by 13–22% of the nucleotides; the protein sequences differed by zero to five amino acid substitutions. Both the DNA and amino acid sequences resolved the evolutionary relationships among congeneric species; relationships among the genera were not well-resolved by this region of mtCOI. Using the same conserved primers, the only amplification product for C. finmarchicus was an aberrant sequence (and putative pseudogene) which differed from the C. finmarchicus COI sequence by 36% of the nucleotides and 32 amino acid substitutions. Species-specific oligonucleotide primers were designed for Calanus spp. (which cannot be distinguished at larval stages) and Pseudocalanus spp. (which are difficult to distinguish even as adults). Individual copepods were identified using competitive, multiplexed species-specific polymerase chain reactions (PCR) in two studies of co- occurring sibling species. The first study confirmed the presence of three Calanus spp. in Oslofjord, Norway and found a predominance of C. helgolandicus. The second study determined patterns of distribution and abundance of Pseudocalanus spp. on Georges Bank in the NW Atlantic and showed that P. moultoni predominated in shallow and coastal waters, while P. newmani was more abundant in offshore regions flanking the Bank. Competitive, species- specific PCR is a useful tool for biological oceanographers. This simple, rapid, and inexpensive assay may be used to identify morphologically-similar individuals of any size and life stage, and to determine a species’ presence or absence in pooled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avise, J. C., 1994. Molecular Markers, Natural History and Evolution, Chapman and Hall, New York, NY. 511 pp.

    Google Scholar 

  • Banks, M., D. Hedgecock & C. Waters, 1993. Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large sununit rRNA. Mol. Mar. Biol. Biotechnol. 2: 129–136.

    CAS  Google Scholar 

  • Bradford, J. M. & J. B. Jillett, 1974. Arevision of generic definitions in the Calanidae (Copepoda, Calanoida). Crustaceana 27: 5–16.

    Article  Google Scholar 

  • Bradford, J. M., 1988. Review of the taxonomy of the Calanidae (Copepoda) and the limits to the genusCalamts. Hydrobiologia 167/168: 73–81.

    Article  Google Scholar 

  • Brown, J. M., O. Pellmyr, J. N. Thompson & R. G. Harrison, 1994. Phytogeny of Greya (Lepidoptera: Prodoxidae), based on nucle-otide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data. Mol. Biol. Evol. 11: 128–141.

    PubMed  CAS  Google Scholar 

  • Bucklin, A., B. W. Frost & T. D. Kocher, 1992. DNA sequence variation of the mitochondrial 16S rRNA in Calanus (Copepoda; Calanoida): intra-and inter-specific patterns. Molec. Mar. Biol. Biotech. 1: 397–407.

    CAS  Google Scholar 

  • Bucklin, A., B. W. Frost & T.D. Kocher, 1995. Molecular system-atics of seven species of Calanus and three species of Metridia (Calanoida; Copepoda). Mar. Biol. 121: 655–664.

    Article  CAS  Google Scholar 

  • Bucklin, A., T. C. LaJeunesse, E. Curry, J. Wallinga & K. Garrison (1996a) Molecular genetic diversity of the copepod, Nan-nocalanus minor: genetic evidence of species and population structure in the N. Atlantic Ocean. J. mar. Res. 54: 285–310.

    Article  Google Scholar 

  • Bucklin, A., R. Sundt & G. Dahle, 1996b. Population genetics of Calanus finmarchicus (Copepoda; Calanoida) in the North Atlantic. Proceedings of an ICES Workshop on a TransAtlantic Study of Calanus finmarchicus. Ophelia 44: 29–45.

    Google Scholar 

  • Bucklin, A., R. S. Hill, N. J. Mottola & A. M. Bentley, 1997a. Seasonal patterns of distribution and abundance of the cope-pods, Pseudocalanus moultoni and P. newmani, on Georges Bank: evidence for a dynamic balance between retention and loss. Internat. Cons. Expl. Seas Science Mtg., September, 1997. Background Paper T: 06.

    Google Scholar 

  • Bucklin, A., S. B. Smolenack, A. M. Bentley & P. H. Wiebe, 1997b. Gene flow patterns of the euphausiid, Meganyctiphanes norvégicn, in the N. Atlantic based on DNA sequences for mitochondrial cytochrome oxidase I and cytochrome b. J. Plank. Res. 19: 1763–1781.

    Article  CAS  Google Scholar 

  • Bucklin, A., A. M. Bentley & S. P. Franzen, 1998a. Distribution and relative abundance of the copepods, Pseudocalanus moultoni and P. newmani, on Georges Bank based on molecular identification of sibling species. Mar. Biol. (in press).

    Google Scholar 

  • Bucklin A., C. C. Caudill & M. Guarnieri, 1998b. Population genetics and phylogeny of marine planktonic copepods. Chapter 14. In: K. C. Cooksey (ed.). Molecular Approaches to the Study of the Ocean. London: Chapman & Hall: 303–318.

    Chapter  Google Scholar 

  • Burton, R. S. & B.-N. Lee, 1994. Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogenetic break in the copepod Tigriopus californicus. Proc. natn. Acad. Sci. 91:5197–

    Article  CAS  Google Scholar 

  • Charlieu, J.-P., 1994. Distinction between almost-identical DNA sequences by polymerase chain reaction. Chapter 12. In H. G. Griffin & A. M. Griffin (eds), PCR Technology Current Innovations. CRC Press, Boca Raton, FL: 101–106.

    Google Scholar 

  • Clary, D. O. & D. R. Wolstenholme, 1985. The raitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J. molec. Evol. 22: 252–271.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, C. W., N. W. Blackstone & L. W. Buss, 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539–542.

    Article  PubMed  CAS  Google Scholar 

  • Davis, C. S, 1987. Zooplankton Life Cycles. In: Backus R. H. (ed.). Georges Bank, MIT Press, Cambridge, MA: 256–267.

    Google Scholar 

  • DeDecker, A. H. B., B. Z. Kaczmaruk & G. Marska, 1991. A new species of Calanus (Copepoda, Calanoida) from South African waters. Ann. S. Afr. Mus. 101: 27–44.

    Google Scholar 

  • DeLong, E. F., G. S. Wickman & N. R. Pace, 1989. Phylogenetic strains: ribosomal RNA-based for the identification of single cells. Science 243: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D. R., D. A. S. B. Jollivet, L. R. J. Dixon, J. A. Nott & P. W. H. Holland, 1995. The molecular identification of early life-history stages of hydrothermal vent organisms. In L. M. Parson, C. L. Walker & D. R. Dixon (eds.), Hydrothermal Vents and Processes, Geol. Soc. Spec. Publ. 87: 343–350.

    Google Scholar 

  • Engels, W., 1992. Amplify. Computer Freeware. Genetics Department, University of Wisconsin, Madison, WI 53706.

    Google Scholar 

  • Fell, J. W., 1995. rDNA targeted oligonucleotide primers for the identification of pathogenic yeasts in a polymerase chain reaction. J. Ind. Microbiol. 14: 475–477.

    Article  PubMed  CAS  Google Scholar 

  • Fleminger, A. & K. Hulsemann, 1977. Geographical range and tax-omonic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis). Mar. Biol. 40: 233–248.

    Article  Google Scholar 

  • Folmer, O., M. Black, W. Hoen, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Molec. Mar. Biol. Biotech. 3: 294–299.

    CAS  Google Scholar 

  • France, S. C. & T. D. Kocher, 1996. DNA sequencing of formalin-fixed crustaceans from archival research collections. Mol. Mar. Biol. Biotech. 5:304–313.

    CAS  Google Scholar 

  • Frost, B. W., 1971. Taxonomic status of Calanus finmarchicus and C. glacialis (Copepoda), with special reference to adult males. J. Fish. res. Bd. Can. 28: 23–30.

    Article  Google Scholar 

  • Frost, B. W., 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. Glacialis. Mar. Biol. 26: 77–99.

    Article  Google Scholar 

  • Frost, B. W., 1989. A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can. J. Zool. 67: 525–551.

    Article  Google Scholar 

  • Gibbs, R. A., P.-N. Nguyen & C. T. Caskey, 1989. Detection of single DNA base differences by competitive oligonucleotide priming. Nuc. Acids Res. 17: 2437–2448.

    Article  CAS  Google Scholar 

  • Gocke, C. D., F. A. Benko & P. K. Rogan, 1998. Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum. Genet. 102: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Grainger, E. H., 1961. The copepods Calanus glacialis and Calanus finmarchicus (Gunnerus) in Canadian Arctic-Subarctic waters. J. Fish. Res. Bd. Can. 18: 663–678.

    Article  Google Scholar 

  • Harasewych, M. G., S. L. Adamkewicz, J. A. Blake, D. M. Saudek, T. Spriggs & C. J. Bult, 1997. Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda): an assessment based on partial 18S rRNA and cytochrome c oxidase I sequences. Mol. Mar. Biol. Biotechnol. 6: 1–20.

    PubMed  CAS  Google Scholar 

  • Hulsemann, K., 1991. Calanus euxinus, new name, a replacement name for Calanus ponticus Karavaev, 1894 (Copepoda: Calanoida). Proc. biol. Soc. Wash. 104: 620–621.

    Google Scholar 

  • Jacobs, H. T. & B. Grimes, 1986. Complete nucleotide sequences of the nuclear pseudogenes for cytochrome oxidase subunit I and the large mitochondrial ribosomal RNA in the sea urchin Strongylocentrotus purpuratus. J. mol. Biol. 187: 509–527.

    Article  PubMed  CAS  Google Scholar 

  • Jaschnov, W. A., 1955. Morphology, distribution and systematics of Calanus finmarchicus s.1. [Russ.] Zool. Zh. 34: 1210–1223.

    Google Scholar 

  • Juan, C., P. Oromi & G. M. Hewitt, 1995. Mitochondrial DNA phylogney and sequential colonization of Canary Islands by darking beetles of the genus Pimelia (Tenebrionidae). Proc. R. Soc. Lond. B Biol. Sci. 261: 173–180.

    Article  CAS  Google Scholar 

  • Jukes, T. H. & C. R. Cantor, 1969. Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism, Academic Press, New York: 21–31.

    Google Scholar 

  • Knowlton, N., 1993. Sibling species in the sea. Ann. Rev. Ecol. Syst. 24: 189–216.

    Article  Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 1993. MEGA: Molecular Evolutionary Genetics Analysis, Version 1.0, Pennsylvania State University, University Park, PA 16802.

    Google Scholar 

  • Lunt, D. H., D. X. Zhang, J. M. Szymura & G. M. Hewitt, 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol. Biol. 5: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • McLaren, I. A., E. Laberge, C. J. Corkett & J.-M. Sevigny, 1989. Life cycles of four species of Pseudocalanus in Nova Scotia. Can. J. Zool. 67: 552–558.

    Article  Google Scholar 

  • Mackas, D. L., H. Sefton, C. B. Miller & A. Raich, 1993. Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during spring. Progr. Oceanogr. 32: 259–294.

    Article  Google Scholar 

  • Medeiros-Bergen, D. E., R. R. Olson, J. A. Conroy & T. D. Kocher, 1995. Distribution of holothurian larvae determined with species-specific genetic probes. Limnol. Oceanogr. 40: 1225–1235.

    Article  Google Scholar 

  • Miller, C. B., 1988. Neocalanus flemingeri, a new species of Calanidae (Copepoda; Calanoida) from the subarctic Pacific Ocean, with a comparative redescription of Neocalanus plumchrus (Marukawa). Progr. Oceanogr. 20: 263–273.

    Google Scholar 

  • Olson, R. R., J. Runstadler & T. D. Kocher, 1991. Whose larvae? Nature 351: 357–358.

    Article  PubMed  CAS  Google Scholar 

  • Palumbi, S. R. & J. Benzie, 1991. Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. Molec. Mar. Biol. Biotech. 1: 27–34.

    CAS  Google Scholar 

  • Parfait, B., P. Rustin, A. Munnich & A. Rotig, 1998. Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem. Biophys. Res. Commun. 247: 57–59.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, B. V., 1996. A phylogenetic analysis of cuckoo bumblebees (Psithyrus, Lepeletier) and bumblebees (Bombus, Latreille) inferred from sequences of the mitochondrial gene cytochrome oxidase I. Mol. Phylogenet. Evol. 5: 289–297.

    Article  CAS  Google Scholar 

  • Quesada, H., D. A. Skibinski & D. O. Skibinski, 1996. Sex-biased heteroplasmy and mitochondrial DNA inheritance in the mussel Mytilus galloprovincialis Lmk. Curr. Genet. 29: 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Rychlik, W., 1992. OLIGO, Ver. 4.04. Computer software. National Biosciences, Inc, Plymouth, MN.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sameoto, D. D., L. O. Jaroszynski & W. B. Fraser, 1980. BIONESS, a new design in multiple net Zooplankton samplers. Can. J. Fish. aquat. Sci. 37: 722–724.

    Article  Google Scholar 

  • Sevigny, J.-M., I. A. McLaren & B. W. Frost, 1989. Discrimination among and variation within species of Pseudocalanus based on the GPI locus. Mar. Biol. 102: 321–327.

    Article  Google Scholar 

  • Skjoldal, H. R. & F. Rey, 1989. Pelagic production and variability of the Barents Sea ecosystem. In K. Sherman & L. M. Alexander (eds.), Biomass Yields and Geography of Large Marine Ecosystems AAAS Publ, 241–286.

    Google Scholar 

  • Stauffer, C., F. Lakatos & G. M. Hewitt, 1997. The phylogenetic relationships of seven European Ips (Scolytidae, Ipinae) species. Insect. Mol. Biol. 6: 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L., 1993. Phylogenetic analysis using parsimony (PAUP), Ver. 3.1, University of Illinois, Champaign.

    Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucle-otide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.

    PubMed  CAS  Google Scholar 

  • Wiebe, P. H., A. W. Morton, A. M. Bradley, R. H. Backus, J. E. Craddock, V. Barber, T. J. Cowles & G. R. Flierl, 1985. New developments in the MOCNESS, an apparatus for sampling Zooplankton and micronekton. Mar. Biol. 87: 313–323.

    Article  Google Scholar 

  • Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, R. G. Higuchi, S. R. Palumbi, E. M. Proger, R. D. Sage & M. Stoneking, 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. linn. Soc. 26: 375–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. P. Zehr M. A. Voytek

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bucklin, A., Guarnieri, M., Hill, R.S., Bentley, A.M., Kaartvedt, S. (1999). Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. In: Zehr, J.P., Voytek, M.A. (eds) Molecular Ecology of Aquatic Communities. Developments in Hydrobiology, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4201-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4201-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5827-8

  • Online ISBN: 978-94-011-4201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics