Skip to main content

Asymptotic Properties of Reaction-Diffusion Systems Modeling Chemotaxis

  • Chapter
Applied and Industrial Mathematics, Venice—2, 1998

Abstract

We discuss in the sequel on the aggregation properties of some systems of nonlinear parabolic equations which have been extensively used as models for chemotaxis. In particular, several blow-up mechanisms are described, and the corresponding singularity patterns are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.B. Angenent and J.J.L. Valázquez, Asymptotic shape of cusp singularities in curve shortening. Duke Math. J. 77, 1 (1995), 71–110.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.T. Bonner The cellular slime molds.Princeton University Press (1967).

    Google Scholar 

  3. P. Biler, Existence and nonexistence of solutions for a model of gravitation interaction of particles, II. Coll. Math. 68 (1995), 229–239.

    MathSciNet  MATH  Google Scholar 

  4. P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715–743.

    MathSciNet  MATH  Google Scholar 

  5. P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of grav-itational interactions of particles, I. Colloq. Math. 67 (1994), 297–308.

    MathSciNet  MATH  Google Scholar 

  6. P. Biler and T. Nadzieja, Growth and accretion of mass in an astrophysical model, II. Applicationes Math. 23 (1995), 351–361.

    MathSciNet  MATH  Google Scholar 

  7. P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and long time behaviour of solutions. Nonlinear Analysis TMA, 23 (1994), 1189–1209.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bonami, D. Hilhorst, E. Logak and M. Mimura, A free boundary problem arising in a chemotaxis model. Preprint (1996).

    Google Scholar 

  9. S. Childress, Chemotactic collapse in two dimensions. Lecture Notes in Biomath. 55, Springer (1984), 61–68.

    Google Scholar 

  10. S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis. Math. Biosci. 56 (1981), 217–237.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik 12 (1972), 30–39.

    Article  Google Scholar 

  12. H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis. Preprint 232, Weierstrass Institute, Berlin (1996).

    Google Scholar 

  13. C. Godrèche (ed.)Solids far from equilibrium.Cambridge University Press (1992).

    MATH  Google Scholar 

  14. M.A. Herrero and J.J.L. Velèzquez, Singularity patterns in a chemotaxis model. Math. Ann. 306 (1996), 583–623.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.A. Herrero and J.J.L. Velèzquez, Chemotactic collapse for the Keller-Segel model. J. Math. Biol. 35 (1996), 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  16. M.A. Herrero and J.J.L. Velèzquez, A blow-up mechanism for a chemotaxis model. Ann. Scuola Normale Sup. Pisa, IV, XXIV (1997), 633–683.

    Google Scholar 

  17. M.A. Herrero, E. Medina and J.J.L. Velèzquez, Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10 (1997), 1739–1754.

    Article  MathSciNet  MATH  Google Scholar 

  18. M.A. Herrero, E. Medina and J.J.L. Velèzquez, Self-similar blow-up for a reaction-diffusion system. J. Comp. Appl. Math. 97, 1, 2 (1998), 99–119.

    Article  Google Scholar 

  19. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329, 2 (1992), 819–824.

    MathSciNet  MATH  Google Scholar 

  20. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399–415.

    Article  Google Scholar 

  21. M. Mimura, T. Tsujikawa, R. Kobayashi and D. Ueyama, Dynamics of aggregating patterns in a chemotaxis-diffusion-growth model equation. Forma 8 (1993), 179–195.

    MathSciNet  MATH  Google Scholar 

  22. Y. Mizutani and T. Nagai, Self-similar radial solutions to a system of partial differential equations modelling chemotaxis. Bulletin of the Kyushu Institute of Technology, 42 (1995), 19–28.

    MathSciNet  MATH  Google Scholar 

  23. W.W. Mullins and R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy. Journal of Appl. Physics 35, 2 (1964), 444–451.

    Article  Google Scholar 

  24. V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42 (1973), 63–105.

    Article  Google Scholar 

  25. T. Nadzieja, A model of radially symmetric clouds of self-attracting particles. Applicationes Math. 23 (1995), 169–178.

    MathSciNet  MATH  Google Scholar 

  26. V. Nanjundiah and S. Saran, The determination of spatial pattern in Dictyostelium discoideum. J. Biosci. 17, 4 (1992), 353–394.

    Article  Google Scholar 

  27. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. (1995), 1–21.

    Google Scholar 

  28. T. Nagai, T. Senba and T. Suzuki, Concentration behaviour of blow-up solutions for a simplified system of chemotaxis. Preprint (1998).

    Google Scholar 

  29. H.G. Othmer and A. Stevens, Aggregation, blow-up and collapse. The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 4 (1997), 1044–1081.

    MathSciNet  MATH  Google Scholar 

  30. L.A. SegalModeling dynamic phenomena in molecular and cellular biology.Cambridge University Press (1998).

    Google Scholar 

  31. A.M. Turing, The chemical basis for morphogenesis. Phil. Trans. R. Soc. London B. 237 (1952), 37–72.

    Article  Google Scholar 

  32. J.J.L. Velèzquez, Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow. Annali. Scuola Normale Sup. Pisa IV, XXI (1994), 595–628.

    Google Scholar 

  33. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations. Arch. Rat. Mech. Anal. 119 (1992), 335–391.

    Article  MathSciNet  Google Scholar 

  34. G. Wolansly, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity. J. Analyse Math. 59 (1992), 251–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrero, M.A. (2000). Asymptotic Properties of Reaction-Diffusion Systems Modeling Chemotaxis. In: Spigler, R. (eds) Applied and Industrial Mathematics, Venice—2, 1998. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4193-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4193-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5823-0

  • Online ISBN: 978-94-011-4193-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics