Skip to main content

Stabilization Techniques for the Finite Element Method

  • Chapter
Applied and Industrial Mathematics, Venice—2, 1998

Abstract

The standard Galerkin method can be roughly described as being an approximation of the variational formulation of a PDE (or system of PDE’s) in a space of functions that is spanned by piecewise polynomials. This simple idea presents several advantages: first, the discrete system of equations that arise from such an approximation is going to be “banded” since the piecewise polynomials can be constructed to have a “small” support, and therefore the matrices involved are sparse. Second, taking derivatives and integrating polynomials is a very attractive task for any first year calculus student, and the simplicity of the implementation of the method for the most cumbersome PDE or system of PDE’s seems straightforward. Third, the mathematical analysis seems to be possible without a lot of sophistication (at least if we have an elliptic problem, and we disregard technicalities referring to domain shape, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N., Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), pp. 1276–1290.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Baiocchi, F. Brezzi, and L. Franca, Virtual bubbles and the Galerkin-leastsquares method, Comput. Methods Appl. Mech. Engrg., 105 (1993), pp. 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  3. K.-J. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey, 1996.

    Google Scholar 

  4. F. Brezzi, M. Bristeau, L. Franca, M. Mallet, and G. Rogd, A relationship between stabilized.finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96 (1992), pp. 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, New-York, 1991.

    Google Scholar 

  6. F. Brezzi, M. Fortin, and R. Stenberg, Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models, Math. Models Meth. Appl. Sci., 1 (1991), pp. 125–151.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, b = f g, Comput. Methods Appl. Mech. Engrg., 145 (1997), pp. 329–339.

    MathSciNet  MATH  Google Scholar 

  8. F. Brezzi, L. P. Franca, and A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brezzi, T. J. R. Hughes, D. Marini, A. Russo, and E. Suli, A priori error analysis of a finite element method with residual-free bubbles for advection-dominated equations. To appear in SIAM J. Numer. Anal. IAN-CNR Tech. Rep. N.1103 (1998), pp. 1–16.

    Google Scholar 

  10. F. Brezzi, D. Marini, and A. Russo, Pseudo residual-free bubbles and stabilized methods, in Computational Methods in Applied Sciences ‘86, J. A. Désideri et al., eds., John Wiley & Sons, 1996, pp. 3–8. Volume of Invited Lectures of the Third ECCOMAS Conference, 9–13 September 1996, Paris, France.

    Google Scholar 

  11. F. Brezzi, D. Marini, and A. Russo,Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 51–63.

    MathSciNet  MATH  Google Scholar 

  12. F. Brezzi, D. Marini, and E. Süli, Residual-free bubbles for advection-diffusion problems: the general error analysis.

    Google Scholar 

  13. F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Meth. Appl. Sci., 4 (1994), pp. 571–587.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), Pp. 199–259.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Canuto, V. V. Kemenade, and A. Russo, Stabilized spectral methods for the Navier-Stokes equations: Residual-free bubbles and preconditioning, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 65–83.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Douglas and J. Wang, An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52 (1989), pp. 495–508.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. P. Franca, T. J. R. Hughes, and R. Stenberg, Stabilized finite element methods for the Stokes problem, in Incompressible Computational Fluid Dynamics-Trends and Advances, M. D. Gunzburger and R. Nicolaides, eds., Cambridge University Press, 1993, pp. 87–107.

    Chapter  Google Scholar 

  18. L. P. Franca, A. Nesliturk, and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 35–49.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. P. Franca and A. Russo. Work in preparation.

    Google Scholar 

  20. L. P. Franca and A., Russo Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Appl. Math., 4 (1996), pp. 265–278.

    MathSciNet  MATH  Google Scholar 

  21. L. P. Franca and A. Rusdo,Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Appl. Math. Letters, 9 (1996), pp. 83–88.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. P. Franca and A. Rusdo, Mass lumping emanating from residual-free bubbles, Comput. Methods Appl. Mech. Engrg., 142 (1997), pp. 353–360.

    Article  MathSciNet  Google Scholar 

  23. L. P. Franca and A. Rusdo, Unlocking with residual-free bubbles, Comput. Methods Appl. Mech. Engrg., 142 (1997), pp. 361–364.

    MathSciNet  Google Scholar 

  24. V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, New-York, 1986.

    Google Scholar 

  25. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  26. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formu-lation, subgrid scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), pp. 387–401.

    Article  MathSciNet  Google Scholar 

  27. T. J. R. Hughes, G. Feijoo, L. Mazzei, and J.-B. Quincy, The variational multiscale method — a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3–24.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65 (1987), pp. 85–96.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. J. R. Hughes and G. M. Hulbert, Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Methods Appl. Mech. Engrg., 66 (1988), pp. 339–363.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. J. R. Hughes and J. Stewart, A space-time formulation for multi-scale phenomena, J. Comp. Appl. Math., 74 (1996), pp. 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. J. R. Hughes ET AL. Work in preparation.

    Google Scholar 

  32. G. M. Hulbert and T. J. R. Hughes, Space-time finite element methods for second-order hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Johnson, U. Nävert, and J. Pitkäranta, Finite element methods for linear hyperbolic problem, Comput. Methods Appl. Mech. Engrg., 45 (1984), pp. 285–312.

    Article  MathSciNet  MATH  Google Scholar 

  34. O. Pironneau, Finite Element Methods for Fluids, John Wiley,New York, 1989.

    Google Scholar 

  35. A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 132 (1996), pp. 335–343.

    Article  MathSciNet  MATH  Google Scholar 

  36. A posteriori error indicators via bubble functions, Math. Models Meth. Appl. Sei., 6 (1996), pp. 33–41.

    Google Scholar 

  37. O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method, McGraw-Hill, London, 4th ed., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brezzi, F., Russo, A. (2000). Stabilization Techniques for the Finite Element Method. In: Spigler, R. (eds) Applied and Industrial Mathematics, Venice—2, 1998. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4193-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4193-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5823-0

  • Online ISBN: 978-94-011-4193-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics