Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 552))

  • 192 Accesses

Abstract

Soft condensed matter physics has evolved within the last two decades into a thriving field of inquiry. Arguably, it is unique amongst all other fields in physics in the diversity of the topics it encompasses. You just have to have a look at the subjects to be covered in this School to convince yourself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, C. S. (1952) Grain shapes and other metallurgical applications of topology Metal Interfaces, American Society for Metals, Cleveland, OH

    Google Scholar 

  2. Stavans, J. (1993) Evolution of cellular structures, Rep. Prog. Phys., Vol. no. 56, pp. 733–789.

    Article  ADS  Google Scholar 

  3. Stavaris, J. (1993) Evolution of two-dimensional cellular structures: the soap froth Physica A, Vol. no. 194, pp. 307–314.

    Article  ADS  Google Scholar 

  4. Weaire D. and Rivier N. (1984) Soap cells and statistics-random patterns in two-dimensions Contemp. Physics Vol. no. 25 pp. 59–99.

    Article  ADS  Google Scholar 

  5. Fradkov V. E., Kravchenko A. S. and Shvindlerman L. S. (1985) Experimental inves­tigation of normal grain growth in terms of area and topological class Scripta Metall. Vol. no. 19 pp. 1291–1296.

    Article  Google Scholar 

  6. Stine K. J., Rauseo S. A., Moore B. G., Wise J. A. and Knobler C. M. (1990) Evolution of foam structures in Langmuir monolayers of pentadecanoic acid Phys. Rev. A Vol. no. 41 pp. 6884–6892.

    Google Scholar 

  7. Berge B., Simon A. J. and Libchaber A. (1990) Dynamics of gas bubbles in monolayers Phys. Rev. A Vol. no. 41 pp. 6893–6900.

    Google Scholar 

  8. Weaire D., Bolton. F., Molho P. and Glazier J. A. (1991) Investigation of an elemen­tary model for magnetic froth J Phys.: Condens. Mat. Vol. no. 3 pp. 2101–2114.

    Article  ADS  Google Scholar 

  9. von Neumann J. (1952) Discussion: shape of metal grains Metal Interfaces American Society for Metals Cleveland OH.

    Google Scholar 

  10. Mullins W. W. (1956) Two-dimensional motion of idealized grain boundaries J. Appl. Phys Vol. no. 27 pp. 900–904.

    Article  MathSciNet  ADS  Google Scholar 

  11. Glazier J. A., Gross S. P. and Stavans J. (1987) Dynamics of two-dimensional soap froths Phys. Rev. A Vol. no. 36 pp. 306–312.

    Article  ADS  Google Scholar 

  12. Stavans J. and Glazier J. A. (1989) Soap froth revisited: dynamic scaling in the two-dimensional froth Phys. Rev. Lett. Vol. no. 62 pp. 1318–1321.

    Google Scholar 

  13. Stavans J. (1990) Temporal evolution of two-dimensional drained soap froths Phys. Rev. AVol. no. 42 pp. 5049–5051.

    Article  ADS  Google Scholar 

  14. Aste T., Szeto K. Y. and Tain W. Y. (1996) Statistical properties and shell analysis in random cellular structures Phys. Rev. E Vol. no. 54 pp. 5482–5492.

    Article  ADS  Google Scholar 

  15. Iglesias J. R. and de Almeida R. M. C. (1991) Statistical thermodynamics of a two-dimensional cellular system Phys. Rev. A Vol. no. 43 pp. 2763–2770.

    Article  ADS  Google Scholar 

  16. Stavans J., Domany E. and Mukamel D. (1991) Universality and pattern selection in two-dimensional cellular structures Europhysics Lett Vol. no. 15 pp. 479–484.

    Article  ADS  Google Scholar 

  17. Flyvbjerg H. (1993) Model for coarsening froths and foams Phys. Rev. E Vol. no. 47 pp. 4037–4054.

    Article  ADS  Google Scholar 

  18. Nagai T., Ohta S., Kawasaki K. and Okuzono T. (1990) Computer simulation of cellular pattern growth in two and three dimensions Phase Transitions Vol. no. 28 pp. 177–211.

    Article  Google Scholar 

  19. Aboav D. A. (1970) The qrrangement of grains in a polycrystal Metallography Vol. no. 3 pp. 383–390.

    Article  Google Scholar 

  20. Lambert C. J. and Weaire D. L. (1981) The arrangement of cells in a network Met­allography Vol. no. 14 pp. 307–318.

    Article  Google Scholar 

  21. Lewis F. T (1928) The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis Anat. Rec. Vol. no. 38 pp. 341–362.

    Article  Google Scholar 

  22. Rivier N. (1982) On the correlation between sizes and shapes of cells in epithelial mosaics J. Phys. A Vol. no. 15 pp. L143–L148.

    Article  MathSciNet  ADS  Google Scholar 

  23. Langer J.S. (1992) An introduction to the kinetics of first order phase transitions in Solids Far From Equilibrium Cambridge University Press Cambridge.

    Google Scholar 

  24. Lifshitz I.M. and Slyozov V.V. (1961) The kinetics of precipitation from supersatu­rated solid solutionsJ. Phys. Chem. Solids Vol. no. 19 pp. 35–50.

    Article  ADS  Google Scholar 

  25. Wagner C. (1961) Z. Elektrochem. Vol. no. 65 pp. 581–587.

    Google Scholar 

  26. Rogers T. M. and Desai R. C. (1989) Numerical study of late-stage coarsening for off-critical quenches in the Cahn-Hilliard equation of phase separation Phys. Rev. A Vol. no. 39 pp. 4848–4853.

    Article  Google Scholar 

  27. Marqusee J. A. Dynamics of late stage phase separation in two dimensions J. Chem. Phys. Vol. no. 81 pp. 976–981.

    Google Scholar 

  28. Tokuyama ICI. and Kawasaki K. (1984) Statistical mechanical theory of coarsening of spherical droplets Physica A Vol. no. 123 pp. 386–411.

    Article  ADS  Google Scholar 

  29. Marder M. (1985) Correlations and droplet growth Phys. Rev. Lett. Vol. no. 55 pp. 2953–2956.

    Article  ADS  Google Scholar 

  30. Zheng Q. and Gunton J.D. (1989) Theory of Ostwald ripening for two-dimensional systems Phys. Rev. A Vol. no. 39 pp. 4848–4853.

    Article  ADS  Google Scholar 

  31. Levitan B. and Domany E. (1998) Ostwald ripening in two dimensions: correlations and scaling beyond mean field Phys. Rev. E Vol. no. 57 1895–1911; Ostwald ripening in two dimensions: treatment with pairwise interactions J. Stat. Phys. Vol. no. 93 501–510.

    Google Scholar 

  32. Krichevsky O. and Stavans J. (1993) Correlated Ostwald ripening in two dimensions Phys. Rev. Lett. Vol. no. 70 pp. 1473–1476; (1995) Ostwald Ripening in a two-dimensional system: correlation effects Phys. Rev. E Vol. no. 52 pp. 1818–1827.

    Google Scholar 

  33. Brown L. C. (1989) A new examination of classical Coarsening Theory Acta metall. Vol. no. 37 pp. 71–77.

    Article  Google Scholar 

  34. Meerson B. and Sasorov P. V. (1996) Domain stability competition growth and selection in globally constrained bistable systems Phys. Rev. EVol. no. 53 pp. 3491–3494.

    Article  ADS  Google Scholar 

  35. Lebowitz J. L. and Rowlinson J. S. (1964) J. Chem. Phys. Vol. no. 41 133-xxx.

    Article  ADS  Google Scholar 

  36. Biber T. and Hansen J. P. (1991) Phase separation of asymmetric binary hard-sphere fluids Phys. Rev. Lett. Vol. no. 66 2215–2218.

    Article  ADS  Google Scholar 

  37. Rosenfeld Y. (1994) Phase separation of asymmetric binary hard-sphere fluids: self-consistent density functional theory Phys. Rev. Lett. Vol. no. 72 3831–3835.

    Article  ADS  Google Scholar 

  38. Poon W. C. K. and Warren P. B. (1994) Phase behavior of hard-sphere mixtures Europhys. Lett. Vol. no. 28 513–518.

    Article  ADS  Google Scholar 

  39. Imhof A. and Dhont J. K. G. (1995) Experimental Phase Diagram of a Binary Colloidal Hard-Sphere Mixture with a Large Size Ratio Phys. Rev. Lett. Vol. no. 75 1662–1665.

    Article  ADS  Google Scholar 

  40. Steiner U.; Meller A.; Stavans J. (1995) Entropy driven phase separation in binary emulsions Phys. Rev. Lett. Vol. no. 74 4750–4754.

    Article  ADS  Google Scholar 

  41. Asakura S. and Oosawa J. (1958) On interaction between two bodies immersed in a solution of macromolecules J. Polymer Sci. Vol. no. 32 183–184.

    ADS  Google Scholar 

  42. Vrij A. (1976) Polymers at interfaces and the interactions in colloidal dispersions Pure Appl. Chem. Vol. no. 48 471–483.

    Article  Google Scholar 

  43. Ilett S. M., Orrock A., Poon, W. C. K. and A. D. Pusey (1995) Phase behavior of a model colloid-polymer mixture Phys. Rev. E Vol. no. 51 1344–1352.

    Article  ADS  Google Scholar 

  44. Meller A., Stavans J. (1996) Stability of Emulsions with Non-Adsorbing Polymers Langmuir Vol. no. 12 301–304.

    Article  Google Scholar 

  45. Piazza R.; Di Pietro G.(1994) Phase Separation and Gel-like Structures in Mixtures of Colloids and Surfactant Europhys. Lett. Vol. no. 28 445–450.

    Article  ADS  Google Scholar 

  46. Bibette J.; Roux D.; Pouligny B. (1992) Creaming of Emulsions: the Role of Depletion Forces Induced by Surfactant J. Phys. II France Vol. no. 2 401–424.

    Article  Google Scholar 

  47. Lekkerkerker H. N. W., Poon W.C.K., Pusey P. N., Stroobants A. and Warren P. B. (1992) Phase Behavior of Colloid+Polymer Mixtures. Europhys. Lett. Vol. no. 20 559–564.

    Article  ADS  Google Scholar 

  48. Meijer E. J. and Frenkel D. (1994) Colloids dispersed in polymer solutions. A computer simulation study J. Chem. Phys. Vol. no. 100 6873–6886.

    Article  ADS  Google Scholar 

  49. Poon W. C. K., Pirie A. D. and Pusey P. N. (1995) Gelation in colloid-polymer mixtures.Faraday Discuss. Vol. no. 101 65–76.

    Article  Google Scholar 

  50. . Meller A., Gisler T., Weitz D. and Stavans J. (1999) Viscoelasticity of Depletion-Induced Gels in Emulsion-Polymer Systems to be published Langmuir.

    Google Scholar 

  51. Kaplan P. D., Faucheux L. P. and Libchaber (1994) A. Direct observation of the entropic potential in a binary suspension Phys. Rev. Lett. Vol. no. 73 2793–2797.

    Article  ADS  Google Scholar 

  52. Newton I. Optiks (Smith and Walford London 1704) R. Hooke in The History of the Royal Society of London (T. Birch London 1757).

    Google Scholar 

  53. Hooke R. (1672) On holes (black film) in soap bubbles Comm. Royal Soc. march 28.

    Google Scholar 

  54. Derjaguin B. V. and Landau L.D. (1941) Acta Physicochim. URSS Vol. no. 14 633.

    Google Scholar 

  55. . Verwey E. J. W. and Overbeek J. Th. G. (1948) Theory of the Stability of Lyophobic Colloids Elsevier Amsterdam.

    Google Scholar 

  56. Lyklema J. and Mysels K. J. (1965) A study of double layer repulsion and van der Waals attraction in soap films Jour. Am. Chem. Soc. Vol. no. 87 2539–2546.

    Article  Google Scholar 

  57. Krichevsky O. and Stavans J. (1995) Micellar stratification in soap films: a light scattering study Phys. Rev. Lett. Vol. no. 74 2752–2756.

    Article  ADS  Google Scholar 

  58. Krichevsky O. and Stavans J. (1997) Confined fluid between two walls: the case of micelles inside a soap film Phys. Rev. E. Vol. no. 55 7260–7266.

    Article  ADS  Google Scholar 

  59. Bergeron V. and Radke C. J. (1992) Equilibrium measurements of oscillatory dis­joining pressures in aqueous foam films Langmuir Vol. no. 8 3020–3026.

    Article  Google Scholar 

  60. Nikolov A. D. and Wasan D. T. (1992) Langmuir Vol. no. 8 2985.

    Article  Google Scholar 

  61. Nikolov A. D. and Wasan D. T. (1989) Ordered micelle structuring in thin films formed from anionic surfactant solutions J. Colloid Interface Sci. Vol. no. 133 1–12.

    Article  Google Scholar 

  62. Sonin A. and Langevin D. (1993) Stratification dynamics of thin films made from aqueous micellar solutions Europhys. Lett. Vol. no. 22 271–277.

    Article  ADS  Google Scholar 

  63. Corti M. and Degiorgio V. (1978) Laser light scattering investigation on the size shape and polydispersity of ionic micelles Ann. de Physique Vol. no. 3 303–308.

    Google Scholar 

  64. J. Israelachvili Intermolecular and Surface Forces Academic Press London.

    Google Scholar 

  65. Tarazona P. and Vicente L. (1985) A model for density oscillations in liquids between walls Mol. Phys. Vol. no. 56 557–572.

    Article  ADS  Google Scholar 

  66. Richetti P. and Kékicheff P. (1992) Direct measurement of depletion and structural forces in a mlcellar system Phys. Rev. Lett. Vol. no. 68 1951–1955.

    Article  ADS  Google Scholar 

  67. J. L. Parker, P. Richetti, P., Kékicheff P and Sarman S.(1992) Direct measurement of structural forces in a supermolecular fluid Phys. Rev. Lett. Vol. no. 68 1955–1958.

    Article  ADS  Google Scholar 

  68. Jaeger H. M. and Nagel S. R. (1992) Physics of the granular state Science Vol. no. 255 1523–1531.

    Google Scholar 

  69. Stavans J. (1998) Axial segregation of powders in a horizontal rotating tube J. Stat. Phys. Vol. no. 93 467–475.

    Article  ADS  Google Scholar 

  70. Boutreux T. and de Cannes P. G. (1996) Surface flows of granular mixtures: I. general principles and minimal model Jour. Phys. I France Vol. no. 6 1295–1304.

    Article  Google Scholar 

  71. Oyama Y. (1939) Bull. Inst. Phys. Chem. Res. Japan Vol. no. Rep. 18 600 in Japanese.

    Google Scholar 

  72. Donald M. B. and Roseman B. (1962) Mechanisms in a horizontal drum mixer British Chem. Eng. Vol. no. 7 749–753.

    Google Scholar 

  73. Hill K. M. and Kakalios J. (1994) Reversible axial segregation of granular materials Phys. Rev. E Vol. no. 49 R3610–R3613.

    Article  ADS  Google Scholar 

  74. Das Gupta S., Khakhar D. V. and Bhatia S K. (1991) Axial segregation of particles in a horizontal rotating cylinder Chem. Eng. Sci. Vol. no. 46 1513–1517.

    Article  Google Scholar 

  75. Zik O., Levine D., Lipson S. G., Shtrikman S. and Stavans J. (1994) Rotationally induced segregation of granular materials Phys. Rev. Lett. Vol. no. 73 644–648.

    Article  ADS  Google Scholar 

  76. Choo K., Molten T. C. A. and Morris S. W. (1997) Traveling granular segregation patterns in a long drum mixer Phys. Rev. Lett.Vol. no. 79 2975.

    Article  ADS  Google Scholar 

  77. Frette V. and Stavans J. (1997) Avalanche mediated transport in a rotated granular mixture Phys. Rev. E 56 6981–6990.

    Article  ADS  Google Scholar 

  78. Levitan B. (1998) Long time limit of rotational segregation of granular media Phys. Rev. E Vol. no. 58 2061–2064.

    Article  ADS  Google Scholar 

  79. Hill K. M., Caprihan A. and Kakalios J. (1997) Bulk segregation in rotated granular material measured by magnetic resonance imaging Phys. Rev. Lett. Vol. no. 78 50–54.

    Article  ADS  Google Scholar 

  80. Metcalfe G., Shinbrot T., McCarthy J. J. and Ottino J. M. (1995) Avalanche mixing of granular solids Nature Vol. no. 374 39–41.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavans, J. (2000). A Cocktail of Soft Condensed Matter. In: Skjeltorp, A.T., Edwards, S.F. (eds) Soft Condensed Matter: Configurations, Dynamics and Functionality. NATO Science Series, vol 552. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4189-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4189-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6403-0

  • Online ISBN: 978-94-011-4189-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics