Skip to main content

Integrated ecological assessment methods as a basis for sustainable catchment management

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 149))

Abstract

During the 20th century, environmental problems have increased from sewage discharge in the first decennia towards climate change today. An increase in scale of threats implies an increase in scale of management and assessment. Successively, physico-chemical, biological and ecological assessment evolved but failed to stop deterioration. The development in techniques runs parallel to the evolution in assessment. Eight major groups of assessment techniques are distinguished: indices (saprobic, diversity, biotic), multimetrics and rapid techniques, physico-ecological, catchment scale, ecosystem components, assemblage/community, process, and non-taxonomic assessment. An increasing refinement is observed in objectives, measures and complexity, and a decreasing one in levels of scale, stream type and, more often, taxonomy. The applied algorithms were typically restricted to single summary measures. Multivariate analysis was introduced only recently. Assessment can do without a reference condition. Still, this condition is often used in assessment. Therefore, the role of the reference is discussed and it is concluded that, if used, it needs to be defined strictly. The role of nine concepts of lotic ecology in assessment is studied. Two major groups of concepts are distinguished. One is related to catchment-scale functioning of streams and the other to instream habitat-related processes and biodiversity. The 5-S-Model, a frame that divides the stream ecosystem into five major components: system conditions, stream hydrology, structures, substances and species (Verdonschot et al., 1998: The 5-S-Model, an integrated approach for stream rehabilitation. In H.O. Hansen & B.L. Madsen, River Restoration ′96, Session lectures proceedings. National Environmental Research Institute, Denmark, International Conference arranged by the European Centre for River Restoration: 36–44), is a first attempt to comprise this knowledge in management. Finally, integrated ecological assessment is defined. It is based on three major approaches: an ecological typology approach, an ecological catchment approach and a societal approach. Ecological typology implies a nested multiple parameter approach based on regional ecological stream typology where types are scaled and different taxonomic groups are incorporated. Ecological typology sets the ecological demands necessary to make management sustainable. The ecological catchment approach implies a nested multiple scale approach which couples natural and anthropogenic features and dynamics of the catchment both in space and time. This approach sets the conditions within the catchment to facilitate sustainable catchment management. The societal approach adds human activities to the first two. It couples ecological demands and anthropogenic uses and supports those user choices that make management sustainable. The application of these three approaches is initiated to enable sustainable catchment management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, D. J. & L. B. Johnson, 1997. Catchment-scale analysis of aquatic ecosystems. Freshwat. Biol. 37: 107–111.

    Article  Google Scholar 

  • Allan, T. F. H. & Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. Univ. Chicago Press. Chicago.

    Google Scholar 

  • Allan, D. J., D. L. Erickson & J. Fay, 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwat. Biol. 37: 149–161.

    Article  Google Scholar 

  • Allan, T. F. H., T. W. Hoekstra & R. V. O’Niell, 1984. Interlevel relations in ecological research and management: some working principles from hierarchy theory. Gen. Tech. Rep. RM-110, US Dept. of Agriculture. Forest Service. Rocky Mountain Research Station, Fort Collins, CO.

    Google Scholar 

  • Aleksandrova, N. G., T. G. Moroz, V. S. Polishchuk & E. Y. Rossova, 1986. Combined evaluation of water quality of the lower Dnepr. Wat. Res. 4: 589–596.

    Google Scholar 

  • Andersen, M. M., F. F. Riget & H. Sparholt, 1994. A modification of the Trent index for use in Denmark. Wat. Res. 18: 145–151.

    Article  Google Scholar 

  • Angermeier, P. L. & A. Bailey, 1992. Use of a geographic information system in the conservation of rivers in Virginia, USA. In: Boon, P. J., P. Calow & G. E. Petts (eds), River Conservation and Management. John Wiley & Sons, New York.

    Google Scholar 

  • Armitage, P. D., 1994. Prediction of biological responses. In: Calow, P. & G. E. Petts (eds), The Rivers Handbook. Hydrological and Ecological Principles. Blackwell Sci. Publ. 2: 254–275.

    Google Scholar 

  • Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Wat. Res. 17: 333–347.

    Article  CAS  Google Scholar 

  • Barbour, M. T., J. L. Plafkin, B. P. Bradley, C. G. Graves & R. W. Wisseman, 1992. Evaluation of EPA’s rapid bioassessment benthic metrics: metric redundancy and variability among reference stream sites. Envir. Toxicol. Chem. 11: 437–449.

    Article  Google Scholar 

  • Barbour, M. T. J. Gerritsen, G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White & M. L. Bastian, 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. North am. Benthol. Soc. 15: 185–211.

    Article  Google Scholar 

  • BMWP, 1979. Biological monitoring working party. The 1978 national testing exercise. Technical Memorandum 19. Water Data Unit, Reading, UK.

    Google Scholar 

  • Boon, P. J., 1992. Essential elements in the case for river conservation. In: Boon, P. J., P. Calow & G. E. Petts (eds), River Conservation and Management. Wiley & Sons, Chichester, UK: 11-34.

    Google Scholar 

  • Boon, P. J., N. T. H. Holmes, P. S. Maitland, T. A. Rowell & J. Davies, 1997. A system for evaluating rivers for conservation (SERCON): development, structure and function. In: Boon, P. J. & D. L. Howell (eds), Freshwater Quality: Defining the Indefinable9 The Stationary Office, Edinburgh, UK: 299-326.

    Google Scholar 

  • Bovee, K. D., 1982. A guide to stream habitat analysis using the instream flow incremental methodologies. US Wildlife Service Instream Flow Information Paper no. 12. Report no. FWS/OBS-82/26. USFWS Instream Flow Group. Fort Collins, USA.

    Google Scholar 

  • Boyle, T. P., G. M. Smillie, J. C. Anderson & D. R. Beeson, 1990. A sensitivity analysis of nine diversity and seven similarity indices. J. Wat. Poll. Contr. Fed. 62: 749–762.

    Google Scholar 

  • Bradshaw, A. D., 1988. Alternative endpoints for reclamation. Irv. Cairns, J. J. (ed.), Rehabilitating Damaged Ecosystems. CRC Press, Boca Raton, FL. II: 69–85.

    Google Scholar 

  • Braukmann, U., 1997. Zoocoenological and saprobiological contributions to a general regional typology of brooks. Arch. Hydrobiol. 26: 1–355.

    Google Scholar 

  • Braun-Blanquet J., 1928. Pflanzensoziologie. Springer, Wien, 3e Aufl.

    Book  Google Scholar 

  • Brink, B. J. E. ten, S. H. Hosper & F. Colijn, 1991. A quantitative method for description and assessment of ecosystems: the AMOEBA approach. Mar. Poll. Bull. 23: 265–270.

    Article  Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwat. Biol. 37: 1–33.

    Article  Google Scholar 

  • Cairns, J. Jr., 1975. Quantification of biological integrity. In: Kusler, J. A., M. L. Quammen & G. Brooks (eds), Mitigation of Impacts and Losses. Proc. Nat. Wetland Symp. Berne: 276–282.

    Google Scholar 

  • Cairns, J.Jr. & Pratt J.R., 1993. A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York: 10–27.

    Google Scholar 

  • Chandler, R. J., 1970. A biological approach to water quality management. Wat. Poll. Contr. 69: 415–422.

    Google Scholar 

  • Costanza, R., L. Wainger, C. Folke & K. Maler, 1993. Modeling complex ecological economic systems. BioScience 43: 545–555.

    Article  Google Scholar 

  • Cummins, K. W. & M. A. Wilzbach, 1985. Field procedures for analysis of functional feeding groups of stream macroinvertebrates. Appalachian Environmental Laboratory, Univ. Maryland, Frostburg, USA, 18 pp.

    Google Scholar 

  • Dam, H. van, 1987. Acidification of moorland pools: a process in time. Thesis, Agricultural Univ. Wageningen, 175 pp.

    Google Scholar 

  • Davis, W. S. & T. P. Simon, 1995. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. CRC Press, Boca Raton, FL.

    Google Scholar 

  • De Pauw, N. & G. Vanhoren, 1983. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia 100: 153–168.

    Article  Google Scholar 

  • De Pauw, N., P. F. Ghetti & D. P. Manzini, 1992. Biological assessment methods for running waters. In Newman et al. (eds), River Water Quality: Ecological Assessment and Control.

    Google Scholar 

  • Ellis, M. M., 1937. Detection and measurement of stream pollution. Bull. US Bur. Fish. 48: 365–437.

    Google Scholar 

  • Forbes, S. A. & R. E. Richardson, 1913. Studies on the biology of the upper Illinois river. Bull. Illinois State Lab. Nat. Hist. 9: 481–574.

    Google Scholar 

  • Fore, L. S., Karr J. R. & R. W. Wisseman, 1996. Assessing invertebrate responses to human activities: Evaluating alternative approaches. J. N. am. Benthol. Soc. 15: 212–231.

    Article  Google Scholar 

  • Frey, D., 1975. Biological integrity of water: an historical perspective. In: Ballantine, R. K. & L. G. Guarraia (eds), The Integrity of Water. EPA, Washington, DC: 127–139.

    Google Scholar 

  • Fore, S. A., S. I. Guttman, A. J. Bailer, D. J. Altfater & B. V. Counts, 1995. Exploratory analysis of population genetic assessment as water quality indicator. Ecotoxicol. Environ. Safe. 30: 36–46.

    Article  CAS  Google Scholar 

  • Friedrich, G., K. J. Hesse & J. Lacombe, 1993. Die ökologische Gewasserstrukturkarte. Wass. Abwass. 11, Kassel.

    Google Scholar 

  • Frisseil, C. A., W. J. Liss., C. E. Warren & M. D. Hurley, 1986. A hierarchical approach to classifying stream habitat features: viewing streams in a watershed context. Envir. Manage. 10: 199–

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley, Chichester.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implication for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.

    Article  CAS  Google Scholar 

  • Hall, L. W. Jr., S. A. Fisher, W. D. Jr. Killen, M. C. Scott, M. C. Ziegenfuss & R. D. Anderson, 1994. Status assessment in acidsensitive and non-acid-sensitive Maryland coastal plain streams using an integrated biological, chemical, physical, and land use approach. J. aquat. Ecosyst. Health 3: 145–167.

    Article  Google Scholar 

  • Hawkes, H. A., 1975. River zonation and classification. In: Whitton, B. A. (ed.), River Ecology. Studies in Ecology. Univ. Calif. Press 2: 312–374.

    Google Scholar 

  • Hellawell, J. M., 1978. Biological Surveillance of Riven. A Biological Monitoring Handbook. NERC, Stevenage, 333 pp.

    Google Scholar 

  • Hellawell, J. M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier, London, 546 pp.

    Book  Google Scholar 

  • Henry, C. P. & C. Amoros, 1995. Restoration ecology of riverine wetlands: I. A scientific base. Envir. Manage. 19: 891–902.

    Google Scholar 

  • Higler, L. W. G. & P. F. M. Verdonschot, 1992. Ökologische Bewertung von Fliessgewässern in den Niederlanden. Gustav Fischer Verlag, Stuttgart, Limnologie aktuell 3: 97–110.

    Google Scholar 

  • Hosper, S. H. & B. J. E. ten Brink, 1989. Naar toetsbare ecologische doelstellingen voor het waterbeheer: de AMOEBE-benadering. H2O 22: 612–617.

    Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.

    Article  Google Scholar 

  • Hutchinson, G. E., 1953. The concept of pattern in ecology. Proc. Nat. Acad. Sci. USA 105: 1–12.

    Google Scholar 

  • Hynes, H. B. N., 1960. Biology of Polluted Waters. Liverpool Univ Press, Liverpool, UK, 202 pp.

    Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Verh. In, Verein. Limnol. 19: 1–15.

    Google Scholar 

  • lilies, J. & L. Botosaneanu, 1963. Problémes et méthooes de la classification et de la zonation écologique des eaux courantes. considerées surtout du point de vue faunistique. Mitt. im. Verein. Limnol. 12: 1–57.

    Google Scholar 

  • Jacobson, R., P. Kazyak, D. Janicki, D. Wade, H. Wilson & R. P. Morgan, 1992. Feasability of using an index of biotic integrity (IBI) approach for synthesizing data from a Maryland biological stream survey. Rep. prep. by Versar Inc., Columbia, MD.

    Google Scholar 

  • Jensen, M. E. & P. Bourgeron, 1994. Ecosystem management: principles and applications (Vol. II). Gen. Tech. Rep. PNW-GTR-318, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland.

    Google Scholar 

  • Jensen, M. E., P. Bourgeron, R. Everett & I. Goodman, 1996. Ecosystem management: a landscape ecology perspective. Wat. Resources Bull. 32: 203–216.

    Article  CAS  Google Scholar 

  • Johnson, L. B. & S. H. Gage, 1997. Landscape approaches to the analysis of aquatic ecosystems. Freshwat. Biol. 37: 113–132.

    Article  Google Scholar 

  • Johnson, L. B., C. Richards, G. E. Host & J. W. Arthur, 1997. Landscape influences on water chemistry in midwestern stream ecosystems. Freshwat. Biol. 37: 193–208.

    Article  CAS  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen, 299 pp.

    Google Scholar 

  • Junk, J. W., B. P. Bayley & E. R. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences.

    Google Scholar 

  • Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Karr, J. R. & D. R. Dudley, 1981. Ecological perspective on water quality goals. Envir. Manage. 5: 55–68.

    Article  Google Scholar 

  • Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & I. J. Schlosser, 1986. Assessing biological integrity in runnir g waters: a method and its rationale. Special Publ. 5. Illinois Natural History survey, Urbana.

    Google Scholar 

  • Kerans, B. L. & J. R. Karr, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol. Appl. 4(4) 768–785.

    Article  Google Scholar 

  • Knoben, R. A. E., C. Roos & M. C. M. van Oirschot, 1995. Biological assessment methods for watercourses. UN/ECE task force on monitoring & assessment, Lelystad, Volume 3: 1–86.

    Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1902. Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna. Mitt. Aus d. Kgl. Prüfungsanstalt für Wasserversorgung u. Abwässerbeseitigung 1: 33–72.

    Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1908. Ökologie der planzlichen Saprobien. Ber. dtschen. bot. Ges. 26: 505–519.

    CAS  Google Scholar 

  • Kolkwitz, R. & M. Marsson, 1909. Ökologie der tierischen Saprobien. Int. Rev. Hydrobiol. 2: 126–519.

    Article  Google Scholar 

  • Kondolf, G. M. & M. Larson, 1995. Historical channel analysis and its application to riparian and aquatic habitat restoration. Aquat. Conserv. Mar. Freshwat. Ecosyst. 5: 109–126.

    Article  Google Scholar 

  • Kristensen, P. & H. O. Hansen, 1994. European rivers and lakes. Assessment of their environmental state. European Environment Agency, EEA Environm. Monogr. 1, Copenhagen, 122 pp.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1942–1968.

    Article  Google Scholar 

  • Liebmann, H., 1962. Handbuch der Frischwasser und Abwasserbiologie. Band I, R. Oldenburg, Munich, 588 pp.

    Google Scholar 

  • Martin, D., 1996. Influence du mode d’utilisation du sol sur les caracteristiques chimiques de certaines sources aquifers. Faculte de Sciences Economiques de Potiers. Int. rapp. IBN, Leersum: 1-23.

    Google Scholar 

  • Matthews, R. A., A. L. Buikema, J. Cairns & J. H. Rodgers, 1982. Biological monitoring: Part IIa: receiving system functional methods, relationships and indices. Wat. Res. 16: 129–139.

    Article  Google Scholar 

  • Metcalfe, J. L., 1989. Biological water quality assessment of running water based on macro-invertebrate communities: history and present status in Europe. Envir. Pollut. 60: 101–139.

    Article  CAS  Google Scholar 

  • Miller, K. L., P. M. Leonard, R. M. Hughes, J. R. Karr, P. B. Moyle, L. H. Schrader, B. A. Thompson, R. A. Daniels, K. D. Fausch, G. A. Fitzhugh, J. R. Gammon, D. B. Halliwell, P. L. Angermier & D. J. Orth, 1988. Regional applications of an index of biotic integrity for use in water resource management. Fisheries 13(5): 12–20.

    Article  Google Scholar 

  • Naiman, R. J. & H. Décamps, 1990. The ecology and management of aquatic-terrestrial ecotones. MAB series, Volume 4, UNESCO, Paris. Parthenon Publishing Group, NJ.

    Google Scholar 

  • Naiman, R. J., D. G. Lonzarich, T. J. Beechie & S. C. Ralph, 1992. General principles of classification and the assessment of conservation potential in rivers. In: Boon, P. J., P. Calow & G. E. Petts (eds), River Conservation and Management, Wiley & Sons, Chichester, UK: 93-124.

    Google Scholar 

  • National Rivers Authority, 1992. River Corridor Surveys: Methods and Procedures. Bristol.

    Google Scholar 

  • Nelson, W. G., 1990. Prospects for development of an index of biotic integrity for evaluating habitat degradation in coastal systems. Chem. Ecol. 4: 197–210.

    Article  Google Scholar 

  • Newman, P. J., 1988. Classification of surface water quality. Heinneman, Oxford.

    Google Scholar 

  • Nestler, J. M., R. T. Milhous & J. B. Layzer, 1989. Instream habitat modelling techniques. In: Gore, J. A. & G. E. Petts, Alternatives in regulated river management. CRC Press, Boca Raton, FL: 295–315.

    Google Scholar 

  • Niemi, G. J., P. DeVore, N. Detenbeck, D. Taylor, A. Lima, J. Pastor, J. D. Yount & R. J. Naiman, 1990. Overview of case studies on recovery of aquatic systems from disturbance. Envir. Manage. 14: 571–587.

    Article  Google Scholar 

  • Norris, R. H. & A. Georgis, 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In: Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York: 234–286.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of Ecology. Saunders Company, Philadelphia, 574 pp.

    Google Scholar 

  • Odum, E. P., 1975. Ecology. 2nd edn. Holt, Rinehart & Winston, London, 244 pp.

    Google Scholar 

  • Ohio EPA, 1987/1989. Biological criteria for the protection of aquatic life. Vol. 1. II, III. Ohio Environmental Protection Agency, Columbus, OH.

    Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geol. 77: 118–125.

    Article  Google Scholar 

  • O’Niell, R. V., D. L. DeAngelis, J. B. Waide & T. F. H. Allen, 1986. A hierarchical concept of the ecosystem. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Osborne, L. L. & D. A. Kovacic, 1993. Riparian vegetated buffer strips in water quality restoration and stream management. Freshwat. Biol. 29: 243–258.

    Article  Google Scholar 

  • Pantle, E. & H. Buck, 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas und Wasserfach, 96(18), 604 pp.

    Google Scholar 

  • Peeters, E. T. H. M., J. J. P. Gardeniers & H. T. Tolkamp, 1994. New methods to assess the ecological status of surface waters in the Netherlands. Part 1: Running waters. Verh. int. Verein Limnol.: 1914-1916.

    Google Scholar 

  • Petersen, R. C., B. L. Madsen, M. A. Wilzbach, C. H. D. Magadza, A. Paarlberg, A. Kullberg & K. W. Cummins, 1987. Stream management: emerging global similarities. Ambio 16: 166–179.

    Google Scholar 

  • Petts, G. E., 1990. Water, engineering and landscape: development, protection and restoration. In: Cosgrove, D. & G. E. Petts (eds), Water, Engineering and Landscape. Water Control and Landscape Transformation in the Modern Period. Belhaven Press, London: 188–208.

    Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gros & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA 444/4-89-001. US Environmental Protection Agency. Washington, D.C.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic ecosystems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Envir. Manage. 14: 629–645.

    Article  Google Scholar 

  • Pringle, C. M., 1998. Managing riverine connectivity in complex landscapes to protect ‘remnant natural areas’. Verh. int. Verein. Limnol. (in press).

    Google Scholar 

  • Raven, P. J., N. T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Ever-ard, I. R. Fozzard & K. J. Rouen, 1997. River Habitat Quality: the physical character of rivers and streams in the UK and Isle of Man. Environment Agency, Bristol.

    Google Scholar 

  • Raven, P. J., P. J. Boon, F. H. Dawson & A. J. D. Ferguson, 1998. Towards an integrated approach to classifying and evaluating rivers in the UK. Aquat. Conserv. 8: 383–393.

    Article  Google Scholar 

  • Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 195–233.

    Google Scholar 

  • Resh, V H. & E. P. McElravy, 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York: 159–194.

    Google Scholar 

  • Resh, V. H. & J. D. Unzicker, 1975. Water quality monitoring and aquatic organisms: the importance of species identification. J. Wat. Pollut. Contr. Fed. 47: 9–19.

    CAS  Google Scholar 

  • Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun, 1996. A method for assessing hydrologic alternation within ecosystems. Conserv. Biol. 10: 1163–1174.

    Article  Google Scholar 

  • Richter, B. D., J. V. Baumgartner, R. Wigington & Braun D.P., 1997. How much water does a river need? Freshwat. Biol. 37: 231–249.

    Article  Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed and multiple spatial scales. Landscape Ecol. 11: 141–156.

    Article  Google Scholar 

  • Schumm, S. A., 1977. The Fluvial System. John Wiley & Sons, New York.

    Google Scholar 

  • Seager, J., I. Milne, G. Rutt & M. Crane, 1992. Integrated biological methods for river water quality. In: Newman et al. (eds), River Water Quality: Ecological Assessment and Control.

    Google Scholar 

  • Sedell, J. R., G. H. Reeves, F. R. Hauer, J. A. Stanford & C. R Hawkins, 1990. Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Envir. Manage. 14: 711–724.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The mathematical theory of communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Sládecek, V., 1973. System of water quality from the biological point of view. Ergebnisse der Limnologie 7: 1–128.

    Google Scholar 

  • Slocombe, D. S., 1993. Implementing ecosystem-based management: development of theory, practice and research for planning and managing a region. BioScience 4: 612–622.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? J. anim. Ecol. 46: 337–365.

    Article  Google Scholar 

  • Southwood, T. R. E., 1988. Tactics, strategies and templets. Oikos 52: 3–18.

    Article  Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Article  Google Scholar 

  • Statzner, B. & F Sperling, 1993. Potential contribution of system-specific knowledge (SSK) to stream-management decisions: ecological and economic aspects. Freshwat. Biol. 29: 313–342.

    Article  Google Scholar 

  • Statzner, B., V. H. Resh & A. L. Roux, 1994. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: design of a research strategy for Upper Rhône River and its floodplain. Freshwat. Biol. 31: 253–263.

    Article  Google Scholar 

  • Thome, R. S. T. J. & W. P. Williams, 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwat. Biol. 37: 671–686.

    Article  Google Scholar 

  • Tockner, K. & F. Schiemer, 1997. Ecological aspects of the restoration strategy for a riverfloodplain system of the Danube River in Austria. Global Ecol. Biogeography Lett. 6: 321–329.

    Article  Google Scholar 

  • Tolkamp, H. H., 1984. Biological assessment of water quality in running waters using macroinvertebrates: a case study for Limburg, The Netherlands. Wat. Sci. Techn. 17: 867–878.

    Google Scholar 

  • Tolkamp, H. H., 1985. Using several indices for biological assessment of water quality in running water. Verh. int. Verein. Limnol. 22: 2281–2286.

    CAS  Google Scholar 

  • Townsend, C. R., 1989. The patch dynamics concept of stream community ecology. J. N. am. Benthol. Soc. 8: 51–63.

    Article  Google Scholar 

  • Tuffery, G. & J. Verneaux, 1968. Methode de determination de la qualite biologique des eaux courantes. CERAFER, Paris, 21 pp.

    Google Scholar 

  • Turner, M. G., 1990. Landscape changes in nine rural counties in Georgia. Photogramm. Eng. Remote Sensing 56: 379–386.

    Google Scholar 

  • US Fish and Wildlife Service, 1981. Habitat Evaluation Procedures (HEP). ESM 102 USFWS, Washington, DC, 135 pp.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The River Continuum Concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Article  Google Scholar 

  • Verdonschot, P. F. M., 1990. Ecological characterization of surface waters in the province of Overijssel (The Netherlands). Ph.D. Thesis, Wageningen, 1-255.

    Google Scholar 

  • Verdonschot, P. F. M., 1991. The web-approach: a tool in water management. In: Ecological Water Management in Practice (Proceedings of the Technical Meeting held in Ede, The Netherlands, 3 October 1990). Proc. and Inf. CHO-TNO, 45: 59–76.

    Google Scholar 

  • Verdonschot, P. F. M., 1996. Towards ecological spring management. Crunoecia 5: 183–194.

    Google Scholar 

  • Verdonschot, P. F. M. & J. A. Schot, 1987. Macrofaunal community types in helocrene springs. Ann. Rep. Res. Inst. Nature Management, Leersum 1986: 85–103.

    Google Scholar 

  • Verdonschot, P. F. M. & R. C. Nijboer, 1997. Typology of macrofaunal assemblages applied to water and nature management: a Dutch approach. The RIVPACS International Workshop. 16-18 September 1997, Oxford, UK.

    Google Scholar 

  • Verdonschot P. F. M., J. M. C. Driessen, H. G. Mosterdijk & J. A. Schot, 1998. The 5-S-Model, an integrated approach for stream rehabilitation. In H. O. Hansen & B. L. Madsen, River Restoration ?96, Session lectures proceedings. National Environmental Research Institute, Denmark, International Conference arranged by the European Centre for River Restoration: 36-44.

    Google Scholar 

  • Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25: 376–381.

    Article  CAS  Google Scholar 

  • Wallace, J. B., J. R. Webster & W. R. Woodall, 1977. The role of filter feeders in flowing waters. Arch. Hydrobiol. 79: 506–532.

    Google Scholar 

  • Ward, J. V., 1989. The four dimensional nature of lotic ecosystems. J. North amer. Benth. Soc. 8(1): 2–8.

    Article  Google Scholar 

  • Ward J. V. & J. A. Stanford, 1983a. The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. In: Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Collingwood: 347–356.

    Google Scholar 

  • Ward, J. V & J. A. Stanford, 1983b. The serial discontinuity concept of lotic ecosystems. In: Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Collingwood: 29–42.

    Google Scholar 

  • Warren, C. E., M. Allen & J. W. Haefner, 1979. Conceptual frameworks and the philosophical foundations of general living systems theory. Behav. Sci. 24: 296–310.

    Article  CAS  Google Scholar 

  • Washington, H. G., 1984. Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Wat. Res, 18: 653–694.

    Article  Google Scholar 

  • Woodiwiss, F. S., 1964. The biological system of strem classification used by the Trent River Board. Chem. Ind ist. 11: 443–447.

    Google Scholar 

  • Woodiwiss, F. S., 1980. Biological monitoring of surface water quality. Summary report, Commission of the European Communities. Severn Trent Water Authority, UK, 45 pp.

    Google Scholar 

  • Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A prelimnary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256.

    Article  Google Scholar 

  • Wright, J. F., P. D. Armitage & M. T. Furse, 1989. Prediction of invertebrate communities using stream measurements. Regul. Rivers Res. Manage. 4: 147–155.

    Article  Google Scholar 

  • Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassification der Reinheit fliessender Gewässer. Arch. Hydrobiol. 57: 389–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Jungwirth S. Muhar S. Schmutz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Verdonschot, P.F.M. (2000). Integrated ecological assessment methods as a basis for sustainable catchment management. In: Jungwirth, M., Muhar, S., Schmutz, S. (eds) Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4164-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4164-2_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5814-8

  • Online ISBN: 978-94-011-4164-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics