Skip to main content

Transposable elements as activators of cryptic genes in E. coli

  • Chapter

Part of the book series: Georgia Genetics Review 1 ((GEGR,volume 1))

Abstract

The concept of transposable elements (TEs) as purely selfish elements is being challenged as we have begun to appreciate the extent to which TEs contribute to allelic diversity, genome building, etc. Despite these long-term evolutionary contributions, there are few examples of TEs that make a direct, positive contribution to adaptive fitness. In E. coli cryptic (silent) catabolic operons can be activated by small TEs called insertion sequences (IS elements). Not only do IS elements make a direct contribution to fitness by activating cryptic operons, they do so in a regulated manner, transposing at a higher rate in starving cells than in growing cells. In at least one case, IS elements activate an operon during starvation only if the substrate for that operon is present in the environment. It appears that E. coli has managed to take advantage of IS elements for its own benefit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blattner, F.R., G. Plunket III, C.A. Bloch, N.T. Pema, V. Burland, M. Riley, J. Collado-Vides, J.D. Glasner, C.K. Rode, G.F. May-hew, J. Gregor, N.W. Davis, H.A. Kiekpatrick, M.A. Goeden, D.J. Rose, B. Mau & Y. Shao, 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  • Defez, R. & M. deFelice, 1981. Cryptic operon for β-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97: 11–25.

    PubMed  CAS  Google Scholar 

  • DiNardo, S., K.A. Voelkel, R. Sternglanz, A.E. Reynolds & A. Wright, 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43–51.

    Article  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Giel, M., M. Desnoyer & J. Lopilato, 1996. A mutation in a new gene, bglJ, activates the bgl operon in Escherichia coli K-12. Genetics 143:627–635.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1978. Regulation of newly evolved enzymes. IV Directed evolution of the ebg repressor. Genetics 90: 673–691.

    CAS  Google Scholar 

  • Hall, B.G., 1981. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20: 4042–4049.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1983. Evolution of new metabolic functions in the laboratory. pp. 234–257 in Evolution of Genes and Proteins, edited by M. Nei and R. Koehn, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Hall, B.G., 1995. Evolutionary potential of the ebgA gene. Mol. Biol. Evol. 12:514–517.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1998. Activation of the bgl operon by adaptive mutation. Mol. Biol. Evol. 15: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1999. The spectra of spontaneous growth-dependent and adaptive mutations in ebgR. J. Bacteriol. 181:1149–1155.

    PubMed  CAS  Google Scholar 

  • Hall, B.G. & P.W. Betts, 1987. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics 115: 431–439.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., P.W. Betts & J.C. Wootton, 1989. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635–648.

    PubMed  CAS  Google Scholar 

  • Hall, B.G. & D.L. Hartl, 1974. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics 76: 391–400.

    CAS  Google Scholar 

  • Hall, B.G. & D.L. Hartl, 1975. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics 81: 427–435.

    CAS  Google Scholar 

  • Hall, B.G. & L. Xu, 1992. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol. Biol. Evol. 9: 688–702.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., S. Yokoyama & D. Calhoun, 1983. Role of cryptic genes in microbial evolution. Mol. Biol & Evol. 1: 109–124.

    CAS  Google Scholar 

  • Jurka, J. & V.V. Kapitonov, 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Kricker, M. & B.G. Hall, 1984. Directed evolution of cellobiose utilization in Escherichia coli. Mol. Biol. & Evol. 1: 171–182.

    CAS  Google Scholar 

  • Kricker, M. & B.G. Hall, 1987. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Genetics 115:419–429.

    PubMed  CAS  Google Scholar 

  • Li, W.-H., 1984. Retention of cryptic genes in microbial populations. Mol. Biol. Evol. 1: 212–218.

    Google Scholar 

  • Mahadeven, S., A. E. Reynolds & A. Wright, 1987. Positive and negative regulation of the bgl operon of Escherichia coli. J. Baceriol. 169: 2570–2578.

    Google Scholar 

  • Orgel, L.E. & F. H. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.-L. & P.G. DeBaryshe, 1999. Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica 107: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Parker, L.L. & B. G. Hall, 1988. A fourth E. coli gene system with the potential to evolve β-glucoside utilization. Genetics 119: 485–490.

    PubMed  CAS  Google Scholar 

  • Parker, L.L. & B.G. Hall, 1990a. Characterization and nucleotide sequence of the cryptic cel operon of E. coli K12. Genetics 124: 455–471.

    PubMed  CAS  Google Scholar 

  • Parker, L.L. & B.G. Hall, 1990b. Mechanisms of activation of the cryptic cel operon of E. coli K12. Genetics 124: 473–482.

    PubMed  CAS  Google Scholar 

  • Prasad, I. & S. Schaefler, 1974. Regulation of the β-glucoside system in Escherichia coli K12. J. Bacteriol. 120: 638–650.

    PubMed  CAS  Google Scholar 

  • Reizer, J., A. Reizer & M.H. Saier, Jr, 1990. The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res.Microbiol. 141: 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Schnetz, K., 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J. 14: 2545–2550.

    PubMed  CAS  Google Scholar 

  • Schnetz, K. & B. Rak, 1988. Regulation of the bgl operon of Escherichia coli by transcriptional anti-termination. EMBO J. 7: 3271–3277.

    PubMed  CAS  Google Scholar 

  • Schnetz, K. & B. Rak, 1992 IS5: a mobile enhancer of transcription in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 1244–1248.

    Google Scholar 

  • Schnetz, K., C. Toloczyki & B. Rak, 1987. β-glucoside (Bgl) operon of Escherichia coli K12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J. Bacteriol. 169: 2579–2590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hall, B.G. (2000). Transposable elements as activators of cryptic genes in E. coli . In: McDonald, J.F. (eds) Transposable Elements and Genome Evolution. Georgia Genetics Review 1, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4156-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4156-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5812-4

  • Online ISBN: 978-94-011-4156-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics