Skip to main content

Transposon dynamics and the breeding system

  • Chapter
Transposable Elements and Genome Evolution

Part of the book series: Georgia Genetics Review 1 ((GEGR,volume 1))

Abstract

The selfish DNA hypothesis predicts that natural selection is responsible for preventing the unregulated build up of transposable elements in organismal genomes. Accordingly, between-species differences in the strength and effectiveness of selection against transposons should be important in driving the evolution of transposon activity and abundance. We used a modeling approach to investigate how the rate of self-fertilization influences the population dynamics of transposable elements. Contrasting effects of the breeding system were observed under selection based on transposon disruption of gene function versus selection based on element-mediated ectopic exchange. This suggests that the comparison of TE copy number in organisms with different breeding systems may provide a test of the relative importance of these forces in regulating transposon multiplication. The effects of breeding system also interacted with population size, particularly when there was no element excision. The strength and effectiveness of selection against transposons was reflected not only in their equilibrium abundance, but also in the per-site element frequency of individual insertions and the coefficient of variation in copy number. These results are discussed in relation to evidence on transposon abundance available from the literature, and suggestions for future data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batzer, M., S.S. Arcot, J.W. Phinney, M. Alegria-Hartman, D.H. Kass, S.M. Milligan, C. Klimpton, P. Gill, M. Hochmeister, P.A. Ioannou, R.J. Herrera, D.A. Boudreau, W.D. Scheer, B.J.B. Keats, P.L. Denninger & M. Stoneking, 1996. Genetic variation of recent Alu insertions in human populations. J. Mol. Evol. 42: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Biemont, C., A. Tsitrone, C. Vieira & C. Hoogland, 1997. Transposable element distribution in Drosophila. Genetics 147: 1997–1999.

    PubMed  CAS  Google Scholar 

  • Blondon, F., D. Marie, S. Brown & A. Kondorosi, 1994. Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y., 1996. Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled. Genet. Res. 67: 199–210.

    Article  Google Scholar 

  • Brookfield, J.F.Y. & R.M. Badge, 1997. Population genetics models of transposable elements. Genetics 109: 281–294.

    Google Scholar 

  • Burt, A. & R. Trivers, 1998. Selfish DNA and breeding system in flowering plants. Proc. Roy. Soc. Lond. B 265: 141–146.

    Article  Google Scholar 

  • Charlesworth, B. & N. Barton, 1996. Recombination load is associated with selection for increased recombination. Genet. Res. 67: 27–41.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Article  Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1995. Transposable elements in inbreeding and outbreeding populations. Genetics 140: 415–417.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1986. The evolution of self-regulated transposition of transposable elements. Genetics 112: 359–383.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., C.H. Langley & P. Sniegowski. 1997. Transposable element distributions in Drosophila. Genetics 147: 1993–

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134: 1289–1303.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1990. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44: 1469–1489.

    Article  Google Scholar 

  • Cherrier, B., F. Foucher, E. Kondoros, Y. d’Aubenton, C. Thermes, A. Kondorosi & P. Ratet, 1999. Bigfoot: a new family of MITE elements characterized from the Medicago genus. The Plant Journal 18(4): 431–441.

    Google Scholar 

  • Dooner, H.K. & A. Belachew, 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac/Ds family in maize. Genetics 129: 855–862.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., M.R. Knox, S.R. Pearce, T.H.N. Ellis, 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16: 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, D.L., A.R. Lohe & E.R. Lozovskaya, 1997. Modern thoughts on an ancient marinere: function, evolution, regulation. Ann. Rev. Genet. 31:337–358.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, D.A., 1982. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101: 519–531.

    PubMed  CAS  Google Scholar 

  • Hoogland, C. & C. Biemont, 1996. Chromosomal distribution of transposable elements in Drosophila melanogaster. test of the ectopic recombination model for the maintenance of insertion site number. Genetics 144: 197–204.

    CAS  Google Scholar 

  • Kondrashov, A., 1985. Deleterious mutations as an evolutionary factor. Facultative apomixis and selfing. Genetics 111: 635–653.

    CAS  Google Scholar 

  • Kumar, A., S.R. Pearce, K. McLean, G. Harrison, J.S. Heslop-Harrison, R. Waugh & A.J. Flavell, 1997. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100(1-3): 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C.H., E.A. Montgomery, R.R. Hudson, N.I. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Leutwiler, L.S., B.R. Hough-Evans & E.M. Meyerovitz, 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194: 15–23.

    Article  CAS  Google Scholar 

  • Lewontin, R.C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, N.Y.

    Google Scholar 

  • Maynard Smith, J. & J. Haigh, 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 231: 1114–1116.

    Google Scholar 

  • Montgomery, E.A., B. Charlesworth & C.H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E.A., S.-M. Huang, C.H. Langley & B.H. Judd, 1991. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster. genome structure and evolution. Genetics 129:1085–1098.

    CAS  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mut. Res. 1: 2–9.

    Article  Google Scholar 

  • Murata, S.N., N. Takasaki, M. Saitoh, H. Tachida & N. Okada, 1996. Details of retrotranspositional genome dynamics that provide a rationale for a genetic division: the distinct branching of all the pacific salmon and trout (Oncorhynchus) from the atlantic salmon and trout (Salmo). Genetics 142: 915–926.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyokova & T.F.C. Mackay, 1996. Positive association between copia transposition rate and copy number in D. Molenogaster. Proc. Roy. Soc. Lond. B. 263: 823–831.

    Article  CAS  Google Scholar 

  • Pearce, S.R., G. Harrison, D. Li, J. Heslop-Harrison, A. Kumar & A.J. Flavell, 1996. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 250(3): 305–315.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima & J.L. Bennetzen, 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20: 43–45.

    Article  CAS  Google Scholar 

  • SanMiguel, P., A. Tikhonov, J. Young-Kwan, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  CAS  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–593.

    PubMed  CAS  Google Scholar 

  • Takasaki, N., T. Yamaki, M. Hamada, L. Park & N. Okada, 1997. The salmon SmaI family of short interspersed reptitive elements (SINEs): interspecific and intraspecific variation of the insertions of SINEs in the genomes of chum and pink salmon. Genetics 146: 369–380.

    PubMed  CAS  Google Scholar 

  • Van den Broeck, D., T. Maes, M. Sauer, J. Zetho, P. De Keukeleire, M. D’Hauw, M. Van Montagu, T. Gerats, 1998. Transposon display identifies individual transposable elements in high copy number lines. Plant J. 13: 121–129.

    PubMed  Google Scholar 

  • Vieira, C. & C. Biemont, 1996. Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulons. J. Mol. Evol. 42(2): 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Waugh, R., K. McLean, A.J. Flavell, S.R. Pearce, A. Kumar, B.T. Thomas & W. Powell, 1997. Genetic distribution of BARE-1 retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms. Mol. Gen. Genet. 253: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Zeyl, C., G. Bell & D.M. Green, 1996. Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143: 1567–1577.

    PubMed  CAS  Google Scholar 

  • Zhang, J. & T. Peterson, 1999. Genome rearrangements by nonlinear transposons in maize. Genetics 153: 1403–1410.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Schoen .

Editor information

John F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wright, S.I., Schoen, D.J. (2000). Transposon dynamics and the breeding system. In: McDonald, J.F. (eds) Transposable Elements and Genome Evolution. Georgia Genetics Review 1, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4156-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4156-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5812-4

  • Online ISBN: 978-94-011-4156-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics