Skip to main content

Relevance of crustacean carapace wettability for fouling

  • Conference paper
Life at Interfaces and Under Extreme Conditions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 151))

Abstract

Carapace wettability and density of fouling organisms (bacteria, diatoms, protozoa, fungi, macro-organisms) were investigated for 45 crustacean species (Hoplocarida, Decapoda) from 15 families in the Gulf of Thailand. The results show that crustaceans can create and maintain characteristic carapace wettabilities. About 21 species (47%) possess highly wettable carapaces with contact angles below 20°. Contact angles between 20° and 40° were recorded for four species (2%), angles between 40° and 60° for eight species (4%) and from 60° to 70° for 11 (24%) species. One species, Alpheus euphrosyne (Alpheidae, Decapoda), exhibited an extremely low surface wettability (contact angle: 91°). Densities of colonisers and contact angles did not correlate. Very low wettability by water (θ > 90°) may only contribute little to fouling reduction in A. euphrosyne which showed the most hydrophobic carapace surface and was colonised by the lowest numbers of bacteria among all species and no other colonisers at all. We conclude that surface wettability is of little relevance for antifouling defence in crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absolom, D.R., F.V. Lamberti, Z. Policova, W. Zingg, C.J. Van Oss & A.W. Neumann, 1983. Surface thermodynamics of bacterial adhesion. Apl. envir. Microbiol. 10: 90–97.

    Google Scholar 

  • Abu, G.O., R.M. Weiner, J. Rice & R.R. ColwellL, 1991. Properties of an extracellular adhesive polymer from the marine bacterium Schewanella colwelliana. Biofouling 3: 69–84.

    Article  CAS  Google Scholar 

  • Baier, R.E., 1970. Surface properties influencing biological adhesion. In Manly, R.S. (ed.), Adhesion in Biological Systems. Academic Press, New York, London: 15–48.

    Google Scholar 

  • Barnes, H. & T.B. Bagenal, 1951. Observations on Nephrops norvegica (L.) and on an epizooic population of Balanus crenatus Brug. J. mar. biol. Ass. U.K. 30: 369–380.

    Article  Google Scholar 

  • Bauer, R.T., 1989. Decapod crustacean grooming: functional morphology, adaptive value and phylogenetic significance. In Felgenhauer, B.E., L. Waiting & A.B. Thistle (eds), Functional Morphology of Feeding and Grooming in Crustacea, Crustacean Issues 6, F.R. Schram (ed.), A.A. Balkema, Rotterdam, Brookfield: 49–74.

    Google Scholar 

  • Becker, K., 1993. Attachment strength and colonisation pattern of two macrofouling species on substrata with different surface tension (in situ studies). Mar. Biol. 117: 301–309.

    Article  Google Scholar 

  • Becker, K., 1996. Epibionts on carapaces of some malacostracan crustaceans from the Gulf of Thailand. J. crust. Biol. 16: 92–104.

    Article  Google Scholar 

  • Becker, K. & M. Wahl, 1996. Behavioural patterns as natural antifouling mechanisms of tropical marine crabs. J. exp. mar. Biol. Ecol. 203: 245–258.

    Article  Google Scholar 

  • Becker, K., S. Siriratanachai & T. Hormchong, 1997. Influence of initial substratum surface tension on marine micro-and macrofouling in the Gulf of Thailand. Helgoländer. wiss. Meeresunters. 51: 445–461.

    Google Scholar 

  • Brewer, R.H., 1984. The influence of the orientation, roughness and wettability of solid surfaces on the behaviour and attachment of planulae of Cyanea (Cnidaria: Scyphozoa). Biol. Bull. 166: 11–21.

    Article  Google Scholar 

  • Bultman, J.D., J.R. Griffith & D.E. Field, 1984. Fluoropolymer coatings for the marine environment. In Costlow, J.D. & R.C. Tipper (eds), Marine Corrosion and Biodeterioration — An Interdisciplinary Study. E. & F.N. Spon. Ltd., London: 237–243.

    Chapter  Google Scholar 

  • Carman, K.R. & F.C. Dobbs, 1997. Epibiotic microorganisms on copepods and other marine crustaceans. Microscopy Res. Techn. 37: 116–135.

    Article  CAS  Google Scholar 

  • Chamberlain, A.H.L., 1976. Algal settlement and secretion of adhesive materials. In Sharpley, J.M. & A.M. Kaplan (eds), Proc. 3rd Intern. Biodegrad. Symp., Appl. Sci., London: 417–432.

    Google Scholar 

  • Compere, P. & G. Goffinet, 1995. Cytochemical demonstration of acid mucopolysaccharides in the epicuticular surface coat of the crab Carduus maenas (L.) (Crustacea, Decapoda). Belg. J. Zool. 125: 95–100.

    Google Scholar 

  • Cooksey, K.E. & B. Cooksey, 1986. Adhesion of fouling diatoms to surfaces: some biochemistry. In Evans, L.V. & K.D. Hoagland (eds), Algal Biofouling. Elsevier, Amsterdam: 41–53.

    Chapter  Google Scholar 

  • Corpe, W.A., 1980. Microbial surface components involved in adsorption onto surfaces. In Bitton, G. & K.C. Marshall (eds), Adsorption of Micro-organisms to Surfaces. Wiley Interscience Publ., New York: 105–143.

    Google Scholar 

  • Crisp, D.J., G. Walker, G.A. Young & A.B. Yule, 1985. Adhesion and substrate choice in mussels and barnacles. J. Coll. Interf. Sci. 104: 40–50.

    Article  Google Scholar 

  • Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in the food webs and marine processes. Oceanogr. mar. Biol. Ann. Rev. 28: 73–153.

    Google Scholar 

  • Denell, R., 1960. Integument and exoskeleton. In Waterman, T.H. (ed.), The Physiology of Crustacea, Vol. I. Academic Press, New York-London: 449–473.

    Google Scholar 

  • Dexter, S.C., 1979. Influence of substratum critical surface tension on bacterial adhesion — In situ studies. J. Coll. Interf. Sci. 70: 346–354.

    Article  CAS  Google Scholar 

  • Fletcher, M. & G.I. Loeb, 1979. Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Apl. envir. Microbiol. 37: 67–72.

    CAS  Google Scholar 

  • Fletcher, M., J.M. Lessmann & G.I. Loeb, 1991. Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria. Biofouling 4: 120–140.

    Article  Google Scholar 

  • Fletcher, R.L. & R.E. Baier, 1984. Influence of surface energy on the development of the green alga Enteromorpha. Mar. Biol. Lett. 5: 251–254.

    Google Scholar 

  • Gil-Turnes, M.S., M.E. Hay & W. Fenical, 1989. Symbiotic marine bacteria defend crustacean embryos from a pathogenic fungus. Science 240: 116–118.

    Article  Google Scholar 

  • Gili, J.M., P. Abello & R. Villanueva, 1993. Epibionts and in-termoult duration in the crab Bathynectes piperitus. Mar. Ecol. Progr. Ser. 98: 107–113.

    Article  Google Scholar 

  • Glynn, P.W., 1970. Growth of algal epiphytes on a tropical marine isopod. J. exp. mar. Biol. Ecol. 5: 88–93.

    Article  Google Scholar 

  • Green, P.J. & M.R. Neff, 1972. A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4: 137–171.

    Article  PubMed  CAS  Google Scholar 

  • Hascall, G.K., 1973. The stalk of the suctorian Tokophyra infu-sionum: histochemistry, biochemistry and physiology. J. Proto-zool. 20: 701–704.

    CAS  Google Scholar 

  • Hoagland, K.D., J.D. Rosowski, M.R. Gretz & S.C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J. Phycol. 29: 537–566.

    Article  CAS  Google Scholar 

  • Jensen, A.R. & D.E. Morse, 1988. The bioadhesive of Phragmo-topoma californica tubes: a silk cement containing L-Dopa. J. comp. Physiol. B. 158: 317–324.

    Article  CAS  Google Scholar 

  • Lindner, E., 1984. The attachment of macrofouling invertebrates. In Costlow, J.D. & R.C. Tipper (eds), Marine Corrosion and Biodeterioration — An Interdisciplinary Study. E. & F.N. Spon. Ltd., London: 184–201.

    Google Scholar 

  • Lindner, E., 1992. A low surface energy approach in the control of marine biofouling. Biofouling 6: 193–205.

    Article  CAS  Google Scholar 

  • Marszalek, D.S., S.M. Gerchakov & L.R. Udey, 1979. Influence of substrate composition on marine microfouling. Apl. envir. Microbiol. 38: 987–995.

    CAS  Google Scholar 

  • Nagasawa, S., 1987. Exosceletal scars by bacterial attachment to copepods (Short communication). J. Plankton. Res. 9: 749–753.

    Article  Google Scholar 

  • Nair, N.B., K. Dharmaraj, P.K. Abdul Azis, M. Arunchalam & K. Krishna Kumar, 1984. Ecology of biofouling on Crassostrea madrasensis (Preston) (Mollusca: Bivalvia) in a tropical backwater. Proc. Indian Acad. Sci. (Anim. Sci.) 93: 419–430.

    Article  Google Scholar 

  • Neu, T.R. & K.C. Marshall, 1991. Microbial ‘footprint’: a new approach to adhesive polymer. Biofouling 3: 101–112.

    Article  Google Scholar 

  • Paul, J.H. & W.H. Jeffrey, 1985. Evidence for seperate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Apl. envir. Microbiol. 50: 431–437.

    CAS  Google Scholar 

  • Read, S., S.T. Moss & E.B.G. Jones, 1991. Attachment studies of aquatic hyphomycetes. Phil. Trans. r. Soc, Lond. B 344: 449–457.

    Article  Google Scholar 

  • Rittschof, D. & J.D. Costlow, 1989. Bryozoan and barnacle settlement in relation to initial surface wettability: a comparision of laboratory and field studies. In Ros, E.D. (ed.), Topics in Marine Biology. Scient. Mar. 53: 411–416.

    Google Scholar 

  • Roberts, D., D. Rittschof, E. Holm & A.R. Schmidt, 1991. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J. exp. mar. Biol. Ecol. 150: 203–211.

    Article  Google Scholar 

  • Sechler, G.E. & K. Gundersen, 1971. New technique for microscopic examination of the fouling community of submerged opaque surfaces. Appl. Microbiol. 20: 140–143.

    Google Scholar 

  • Shields, J.D., 1992. Parasites and symbionts of the crab Portunus pelagicus from Moreton Bay, Eastern Australia. J. crust. Biol. 12: 94–100.

    Article  Google Scholar 

  • Stevenson, J.R., 1985. Dynamics of the integument. In Bliss, D.E. & L.H. Mantel (eds), The Biology of Crustacea. Academic Press, London: 2–42.

    Google Scholar 

  • Sutherland, I.W., 1980. Polysaccharides in the adhesion of marine and freshwater bacteria. In Berkeley, R.C.W., J.M. Lynch, J. Melling, P.R. Rutter & B. Vincent (eds), Microbial Adhesion to Surfaces. Ellis Horwood, Chichester: 330–338.

    Google Scholar 

  • Svarvarson, J. & B. Davidsdottir, 1994. Foraminiferan (Protozoa) epizoites on arctic isopods (Crustacea) as indicators of isopod behaviour. Mar. Biol. 118: 239–246.

    Article  Google Scholar 

  • Turner, J.T., M.T. Poster & S.B. Collard, 1979: Infestation of the estuarine copepod Acartia tonsa with the ciliate Epistylis. Trans. am. microsc. Soc. 98: 136–138.

    Article  Google Scholar 

  • Van Loosdrecht, M.C.M., J. Lyklema, W. Norde, G. Schraa & A. Zehnder, 1987. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Apl. envir. Microbiol. 53: 1898–1901.

    Google Scholar 

  • Vrolijk, N.H., N.M. Targett, R.E. Baier & A.E. Meyer, 1990. Surface characteristics of two gorgonian coral species: Implications for a natural antifouling defence. Biofouling 2: 39–54.

    Article  Google Scholar 

  • Wahl, M., K. Kroeger & M. Lenz, 1998. Non-toxic protection against epibiosis. Biofouling 12: 205–226.

    Article  Google Scholar 

  • Waite, J.H., 1987. Nature’s underwater adhesive specialist. Int. J. Adhesion Adhesives 7: 9–15.

    Article  CAS  Google Scholar 

  • Waite, J.H., 1990. The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp. Biochem. Physiol. 97B: 19–29.

    CAS  Google Scholar 

  • Webster, D.R., K.E. Cooksey & R.W. Rubin, 1985. An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom, Amphora coffaeformis. Cell Motility 5: 103–122.

    Article  CAS  Google Scholar 

  • Weissmann, P., D.J. Lonsdale & J. Yen, 1993. The effect of peritrich ciliates on the production of Acartia hudsonica in Long Island Sound. Limnol. Oceanogr. 38: 613–622.

    Article  Google Scholar 

  • Weng, T.H., 1987. The parasitic barnacle, Sacculina granifera Boschma, affecting the commercial sand crab, Portunus pelagicus (L.), in populations from two different environments in Queensland. J. Fish Diseases 10: 221–227.

    Article  Google Scholar 

  • White, K.N., N.A. Ratcliffe & M. Rossa, 1985. The antibacterial activity of haematocyte clumps in the gills of the shore crab, Carduus maenas. J. mar. biol. Ass. U.K. 65: 857–870.

    Article  Google Scholar 

  • Wistuba E., 1980. Kleben und Klebstoffe. Chemie in unserer Zeit 14: 124–133.

    Article  CAS  Google Scholar 

  • Wolff, T., 1959. Epifauna on certain decapod Crustacea. Proc. XVth Congr. Zool. London: 1060–1061.

    Google Scholar 

  • Young, G.A., A.B. Yule & G. Walker, 1988. Adhesion in the anemones Actinia equina L. and Metridium senile (L.). Biofouling 1: 137–146.

    Article  Google Scholar 

  • Xu, Z. & C.W. Burns, 1991. Effect of the epizoic ciliate, Epistylis daphniae, on growth, reproduction and mortality of Boeckella triarticulata (Thomson) (Copepoda: Calanoidea). Hydrobiologia 209: 183–189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Becker .

Editor information

Gerd Liebezeit Sabine Dittmann Ingrid Kröncke

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Becker, K., Hormchong, T., Wahl, M. (2000). Relevance of crustacean carapace wettability for fouling. In: Liebezeit, G., Dittmann, S., Kröncke, I. (eds) Life at Interfaces and Under Extreme Conditions. Developments in Hydrobiology, vol 151. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4148-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4148-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5808-7

  • Online ISBN: 978-94-011-4148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics