Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments

  • Onno Gross
Part of the Developments in Hydrobiology book series (DIHY, volume 151)


Foraminifera are a dominant group of amoeboid protists in the deep-sea and play possibly a significant role in decomposition processes of incoming organic matter. In order to study the poorly known ecology of these protozoans, microcosm experiments with living bathyal benthic foraminifera have been conducted. Foraminifera from 2880 m and shallower water depths were successfully maintained and their movement patterns investigated. By video documentation, high mean migration speed of 20,02 (N = 22) and 24,48 μm min-1 (TV = 10) at 4 °C were found for species such as Hoeglundina elegans and Quinqueloculina seminula from 1847 m and 1921 m water depth, respectively. The results demonstrate that some bathyal foraminifera have migration speeds comparable to those of shallow water species. Environmental factors such as temperature, food concentration and oxygen content showed a marked influence on the migration of some species. An increase in temperature from 10°Cto 15°C resulted in an increase of 35% in the migration speed of Allogromia spp. However, other species reacted differently. Higher food concentration resulted in a decrease in speed of some species. While in Quinqueloculina lamarckiana speed was not greatly affected by a low oxygen content in the sediment, other foraminifera responded to oxygen depletion by migration to the surface layers. Observations of benthic foraminifera in the laboratory microcosms are discussed in relation to microhabitats and the fate of organic matter on the sea floor and in the sediment.

Key words

deep-sea foraminifera migration laboratory experiments oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alongi, D.M., 1992. Bathymetric patterns of deep-sea benthic communities from bathyal to abyssal depths in the western South Pacific (Solomon and Coral Seas). Deep-Sea Res. 39: 549–565.CrossRefGoogle Scholar
  2. Altenbach, A.V., 1992. Short term processes and patterns in the foraminiferal response to organic flux rates. Mar. Micropaleontol. 19: 119–129.CrossRefGoogle Scholar
  3. Anderson, O. R, J.J. Lee & W.W. Faber, 1991. Collection, maintenance and culture methods for the study of living foraminifera. In Lee, J.J. & O.R. Anderson (eds), Biology of Foraminifera. Academic Press, London: 335–358.Google Scholar
  4. Alve, E. & J.M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Progr. Ser. 116: 137–151.CrossRefGoogle Scholar
  5. Barnet, P.R.O., J. Watson & D. Conelly, 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol. Acta 7: 399–408.Google Scholar
  6. Bernhard, J.M., 1993. Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar. Micropaleontol. 20: 203–213.CrossRefGoogle Scholar
  7. Bernhard, J.M., 1996. Microaerophilic and facultative anaerobic benthic foraminifera: a review of experimental and ultrastructural evidence. Rev. Paleobiol. 15: 261–275.Google Scholar
  8. Bernhard, J.M. & E. Alve, 1996. Survival, ATP pool and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia. Mar. Mircropal. 28: 5–17.CrossRefGoogle Scholar
  9. Bernhard, J.M. & S.S. Bowser, 1992. Bacterial biofilms as a trophic resource for certain benthic foraminifera. Mar. Ecol. Progr. Ser. 83: 263–272.CrossRefGoogle Scholar
  10. Bernstein, B.B. & J.P. Meador, 1979. Temporal persistence of biological patch structure in an abyssal benthic community. Mar. Biol. 51: 179–183.CrossRefGoogle Scholar
  11. Bornmalm, L., B.H. Corliss & K. Tedesco, 1997. Laboratory observations of rates and patterns of movement of continental margin benthic foraminifera. Mar. Micropal. 29: 175–184.CrossRefGoogle Scholar
  12. Boltovskoy, E., 1966. Depth at which Foraminifera can survive in sediments. Cushman Found. Foram. Res. Contr. 17: 43–45.Google Scholar
  13. Cedhagen, T., 1996. Foraminiferans as food for cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareaous foraminiferans. Phuket Mar. Biol. Cent. Spec. Publ. 16: 279–290.Google Scholar
  14. Chandler, G.T., Williams D.F. & G. Xiaodong, 1996. Sediment microhabitat effects on carbon isotopic signatures of mircrocosmcultered benthic Foraminifera. Limnol. Oceanogr. 41: 680–688.CrossRefGoogle Scholar
  15. Corliss, B.H., 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314: 435–438.CrossRefGoogle Scholar
  16. Corliss, B.H., 1991. Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Mar. Micropaleontol. 17: 195–236.CrossRefGoogle Scholar
  17. Corliss, B. & K.A. Silva, 1993. Rapid growth of deep-sea benthic foraminifera. Geology 21: 991–994.CrossRefGoogle Scholar
  18. Gage, J.D., 1996. Why are there so many species in deep-sea sediments?. J.exp. mar. Biol. Ecol. 200: 257–286.CrossRefGoogle Scholar
  19. Gooday, A.J., 1986. Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res. 33: 1345–1373.CrossRefGoogle Scholar
  20. Gooday, A.J., 1988. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332: 70–73.CrossRefGoogle Scholar
  21. Gooday, A.J., 1993. Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution. Mar. Micropaleontol. 22: 187–205.CrossRefGoogle Scholar
  22. Gooday, A.J., 1994. The biology of deep-sea foraminifera: a review of some advances and their applications in paleoceanography. Palaios 9: 14–31.CrossRefGoogle Scholar
  23. Gooday, A.J. & P.J.D. Lambshead, 1989. Influence of seasonally deposited phytodetritus on benthic foraminiferal populations in the bathyal northeast Atlantic: the species response. Mar. Ecol. Prog. Ser. 58: 53–67.CrossRefGoogle Scholar
  24. Gooday, A.J. & C.M. Turley, 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Phil. Trans. r. Soc, Lond. 331(119): 119–138.CrossRefGoogle Scholar
  25. Gooday, A.J., L.A. Levin, P. Linke & T. Heeger, 1992. The role of benthic foraminifera in the deep-sea food webs and carbon cycling. In Rowe, G.T. & V. Pariente (eds), Deep-Sea Food Chains and the Global Carbon Cycle. NATO Asi Ser. C., 360, Kluwer Academic Publishers, Dordrecht, The Netherlands: 63–91.CrossRefGoogle Scholar
  26. Graf, G. & P. Linke, 1992. Adenosine nucleotides as indicators of deep-sea benthic metabolism. In Rowe, G.T. & V. Pariente (eds), Deep-Sea Food Chains and the Global Carbon Cycle, NATO Asi Ser. C., 360, Kluwer Academic Publishers, Dordrecht, The Netherlands: 92–105.Google Scholar
  27. Graf, G., S.A. Gerlach, P. Linke, W. Queisser, W. Ritzrau, A. Scheltz, L. Thompsen & U. Witte, 1995. Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record. Geol. Rdsch. 84: 49–58.CrossRefGoogle Scholar
  28. Gross, O., 1998. Investigations on autecology, migration and bioturbation of living benthic deep-sea Foraminifera (Protozoa). Ber. Zentr. Meeres-Klimaforsch. Reihe E. Hydrobiol. Fischereiwiss. 15: 1–224.Google Scholar
  29. Hannah, F. & R. Rogerson, 1997. The temporal and spatial distribution of foraminiferans in marine benthic sediments of the Clyde Sea area, Scotland. Estuar. coast. shelf. Sci. 44: 377–383.CrossRefGoogle Scholar
  30. Hannah, F., R. Rogerson & J. Laybourn-Parry, 1994. Respiration rates and biovolumes of common benthic foraminifera (Protozoa). J. mar. biol. Ass. U.K. 74: 301–312.CrossRefGoogle Scholar
  31. Hemleben, Ch. & H. Kitazato, 1995. Deep-sea foraminifera under long time observation in the laboratory. Deep-Sea Res. 42: 827–832.CrossRefGoogle Scholar
  32. Hieke, W., P. Halbach, M. Türkay & H. Weikart, 1994. Mittelmeer 1993. Cruise No. 25. Meteor-Berichte: 94-3.Google Scholar
  33. Jorissen, F.J., H.C. de Stigter & J.G.V. Widmark, 1995. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26: 3–15.CrossRefGoogle Scholar
  34. Kaiho, K., 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22: 719–722.CrossRefGoogle Scholar
  35. Kaminski, M.A., A.M. Al Hassawai & W. Kuhnt, 1994. Seasonality in microhabitats of rose bengal stained deep-sea benthic foraminifera from the New Jersey continental margin, Abstract, Forams 94, Paleobios Suppl.: 39.Google Scholar
  36. Kitazato, H., 1981. Observation of behaviour and mode of life of benthic foraminifers in laboratory. Geosci. Rep. Shizuoka Univ.6: 61–71.Google Scholar
  37. Kitazato, H., 1983. Microhabitats of benthic foraminifera and their application to fossil assemblages. In Oertli, H.J. (ed.), Benthos’ 83: 2nd Int. Symp. Benthic Foraminifera, Elf Aquitaine, Esso REP, Total DFP. Pau and Bordeaux: 339–344.Google Scholar
  38. Kitazato, H., 1988. Locomotion of some benthic foraminifera in and on sediments. J. Foram. Res. 18: 344–349.CrossRefGoogle Scholar
  39. Kitazato, H. & T. Ohga, 1995. Seasonal changes in deep-sea benthic foraminiferal populations: results of long-term observations at Sagami Bay, Japan. In Sakai, H. & Y. Nozaki (eds), Biochemical Processes and Ocean Flux in the Western Pacific, Terra Sci. Publ., Tokyo: 331–342.Google Scholar
  40. Lampitt, R.S., 1990. Directly measured rapid growth of a deep-sea barnacle. Nature 345: 805–807.CrossRefGoogle Scholar
  41. Langer, M.R. & H. Bagi, 1994. Tubicolous polychaetes as substrates for epizoic foraminifera. J. Micropaleontol. 132.Google Scholar
  42. Langer, M.R. & C.A. Gehring, 1993. Bacteria farming: a possible feeding strategy of some smaller, motile Foraminifera. J. Foram. Res. 23: 40–46.CrossRefGoogle Scholar
  43. Langer, M.R., L. Hottinger & B. Huber, 1989. Functional morphology in low-diverse benthic foraminiferal assemblages from tidal flats of the North Sea. Senckenberg. marit. 20: 81–99.Google Scholar
  44. Lassere, P., 1976. Metabolie activities of benthic microfauna and meiofauna, In McCave, I.N. (ed.), The Benthic Boundary Layer. Plenum Press, New York, London: 95–142.CrossRefGoogle Scholar
  45. Lee, J.J., 1974. Towards understanding the niche of foraminifera. In Hedley, R. & C.G. Adams (eds), Foraminifera. Vol. 1. Academic Press, London: 201–260.Google Scholar
  46. Levin, L.A., 1991. Interactions between metazoans and large, agglutinating protozoans: implications for the community structure of deep-sea benthos. Am. Zool. 31: 886–900.Google Scholar
  47. Linke, P., 1992. Metabolie adaptations of deep-sea benthic foraminifera to seasonality varying food input. Mar. Ecol. Prog. Ser.: 51–63.Google Scholar
  48. Linke, P. & G.F. Lutze, 1993. Microhabitat preferences of benthic foraminifera — a static concept or a dynamic adaptation to optimize food acquisition? Mar. Micropaleontol. 20: 215–234.CrossRefGoogle Scholar
  49. Linke, P., A.V. Altenbach, G. Graf & T. Heeger, 1995. Response of deep-sea benthic foraminifera to a simulated sedimentation event. J. Foram. Res. 25: 75–82.CrossRefGoogle Scholar
  50. Loubere, P., A. Gary & M. Lagoe, 1993. Sea-bed biogeochemistry and benthic foraminiferal bathymetric zonation on the slope of the Northwest Gulf of Mexico. Palaios 8: 439–449.CrossRefGoogle Scholar
  51. Loubere, P., P. Meyers & A. Gary, 1995. Benthic foraminiferal microhabitat selection, carbon isotope values and association with larger animals: a test with Uvigerina peregrina. J. Foram. Res. 25: 83–95.CrossRefGoogle Scholar
  52. Lutze, G.F. & H. Thiel, 1989. Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J. Foram. Res. 19: 153–158.CrossRefGoogle Scholar
  53. Mackensen, A., H.W. Hubberten, T. Bickert, G. Fischer & D.K. Fütterer, 1993. The C in benthic foraminiferal tests of Fontbotia Wuellerstorfi (Schwager) relative to the 13C of dissolved inorganic carbon in southern ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8: 587–610.CrossRefGoogle Scholar
  54. Meyers, M.B., E.N. Powell & H. Fossing, 1988. Movement of oxybiotic and thiobiotic meiofauna in response to changes in pore-water oxygen and sulfide gradients around macro-infaunal tubes. Mar. Biol. 98: 395–314.CrossRefGoogle Scholar
  55. Moodley, L. & C. Hess, 1992. Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol. Bull. 183: 94–98.CrossRefGoogle Scholar
  56. Moodley, L., P.M.J. Herman, J.J. Middelburg & C.H.R. Heip, 1996. Comment: subsurface activity of benthic foraminifera. Mar. Ecol. Prog. Ser. 145: 303–304.CrossRefGoogle Scholar
  57. Moodley, L., B.E.M. Schaub, G.J. Van der Zwaan & P.M.J. Herman, 1998. Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Mar. Ecol. Prog. Ser. 169: 77–86.CrossRefGoogle Scholar
  58. Moodley, L., G.J. Van der Zwaan, P.M.J. Herman, L. Kempers & P. Von Breugel, 1997. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar. Ecol. Prog. Ser. 158: 151–163.CrossRefGoogle Scholar
  59. Pfannkuche, O., 1993. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47 ° N, 20 ° W. Deep-Sea Res. 40: 135–149.CrossRefGoogle Scholar
  60. Pfannkuche, O., W. Balzer & F. Schott, 1994. Carbon-cycle and transport of water masses in the North Atlantic-the winter situation, Cruise No. 27. ‘Meteor’-Berichte: 94–6.Google Scholar
  61. Poremba, K., 1994. Simulated degradation of phytodetritus in deepsea sediments of the NE Atlantic (47 ° N, 19 ° W). Mar. Ecol. Progr. Ser. 105: 291–299.CrossRefGoogle Scholar
  62. Price, R. & R.M. Warwick, 1980. The effect of temperature on the respiration rate of meiofauna. Oecologia 44: 145–148.CrossRefGoogle Scholar
  63. Rex, M.A., 1997. An oblique slant on deep-sea biodiversity. Nature 385: 577–578.CrossRefGoogle Scholar
  64. Severin, K.P., 1987. Laboratory observations of the rate of subsurface movement of a small miliolid foraminifer. J. Foram. Res. 17: 110–116.CrossRefGoogle Scholar
  65. Severin, K.P. & M.G. Erskian, 1981. Laboratory experiments on the vertical movement of Quinqueloculina impressa Reuss through sand. J. Foram. Res. 11: 133–136.CrossRefGoogle Scholar
  66. Severin, K.P., S.J. Culver & C. Blanpied, 1982. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer in fine-grained sediment. Sedimentology 29: 897–901.CrossRefGoogle Scholar
  67. Silva, K.A., B.H. Corliss, A.E. Rathburn & R.C. Thunell, 1996. Seasonality of living benthic foraminifera from the San Pedro Basin, California Borderland. J. Foram. Res. 26: 71–93.CrossRefGoogle Scholar
  68. Smith, C.R., 1994. Tempo and mode in deep-sea benthic ecology: punctuated equlibrium revisited. Palaios 9: 3–13.CrossRefGoogle Scholar
  69. Smith, K.L., R.S. Kaufmann & R.J. Baldwin, 1994. Coupling of near-bottom pelagic processes at abyssal depths in the eastern North Pacific Ocean. Limnol. Oceanogr. 39: 1101–1118.CrossRefGoogle Scholar
  70. Stigter, H.C., 1996. Recent and fossil benthic foraminifera in the Adriatic Sea: distributional patterns in relation to organic flux and oxygen concentration at the seabed. Ph D. Thesis. Univ. Utrecht, GeolÓgica Ultraiectina 144: 1–254.Google Scholar
  71. Thiel, H., 1983. Meiobenthos and nanobenthos of the deep-sea. In Rowe, G.T. (ed.), The Sea, Vol. 8. Deep-Sea Biology, John Wiley, New York: 157–230.Google Scholar
  72. Thiel, H., O. Pfannkuche, G. Schriever, K. Lochte, A.J. Gooday, C. Hemleben, R.F.C. Montoura, C.M. Turley, J.W. Patching & F. Riemann, 1988. Phytodetritus on the deep-sea floor in a Central Oceanic Region of the Northeast Atlantic. Biol. Oceanogr. 6: 203–239.Google Scholar
  73. Thistle, D., 1983. The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance. Deep-Sea Res. 30: 1234–1245.Google Scholar
  74. Travis, J.J. & S.S. Bowser, 1991. The motility of foraminifera. In Lee, J.J. & O.R. Anderson (eds), The Biology of Foraminifera. Academic Press, London: 91–155.Google Scholar
  75. Turley, C.M. & M. Carstens, 1991. Pressure tolerance of oceanic flagellates: implications for remineralizadon of organic matter. Deep-Sea Res. 38: 403–413.CrossRefGoogle Scholar
  76. Turley, C.M., K. Lochte & D.J. Patterson, 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Res. 35: 1079–1092.CrossRefGoogle Scholar
  77. Van Gemerden, H., C.S. Tughan, R. deWit & R. Herbert, 1989. Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. Microbiol. Ecol. 62: 87–102.Google Scholar
  78. Weinberg, J.R., 1991. Rates of movement and sedimentary traces of deep-sea foraminifera and mollusca in the laboratory. J. Foram. Res. 3: 213–217.CrossRefGoogle Scholar
  79. Wetmore, K.L., 1988. Burrowing and sediment movement by benthic foraminifera, as shown by time-lapse cinematography. Rev. Paléobiol., Vol. Spéc. 2, Benthos 86: 921–927.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Onno Gross
    • 1
  1. 1.HamburgGermany

Personalised recommendations