Skip to main content

Defect Formation Through Boson Condensation in Quantum Field Theory

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 549))

Abstract

The study of many body physics as well as the study of elementary particle physics has convinced us that at a very basic level Nature is ruled by quantum dynamical laws. On the other hand, we also know and observe several systems, such as superconductors, superfluids, crystals and ferromagnets which behave as macroscopic quantum systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umezawa, H. (1993) Advanced Field Theory: Micro, Macro and Thermal Physics. American Institute of Physics, New York

    Google Scholar 

  2. Umezawa, H., Matsumoto, H. and Tachiki, M. (1982) Thermo Field Dynamics and Condensed States. North-Holland Publ.Co., Amsterdam

    Google Scholar 

  3. Kibble, T.W.B., (1976) Topology of cosmic domains and strings, J. Phys. A: Math. Gen., A9, pp. 1387–1398; (1980) Some implications of a cosmological phase transition, Phys. Rep., 67, pp. 183-199 Vilenkin, A., (1985) Cosmic strings and domain walls, Phys. Rep., 121, pp. 263-367

    Article  ADS  Google Scholar 

  4. Zurek, W.H. (1997) Cosmological experiments in condensed matter systems, Phys. Rep., 276, pp. 177–221 and refs. therein quoted

    Article  ADS  Google Scholar 

  5. Alfinito, E., Romei, O. and Vitiello, G. (1999) in preparation

    Google Scholar 

  6. Goldstone, J. (1961) Theories with “superconductor” solutions, Nuovo Cimento, 19, pp. 154–164 Goldstone, J., Salam, A. and Weinberg, S. (1962) Broken symmetries, Phys. Rev., 127, pp. 965-970

    Article  MathSciNet  MATH  Google Scholar 

  7. Nambu, Y. and Jona-Lasinio, G. (1961) Dynamical model of elementary particles based on an analogy with superconductivity, Phys. Rev., 124, pp. 246–254

    Article  ADS  Google Scholar 

  8. Inönü, E. and Wigner, E.P. (1953) On the contraction of groups and their representations, Proc. Nat. Acad.Sci.US, 39, pp. 510–524

    Article  ADS  MATH  Google Scholar 

  9. De Concini, C. and Vitiello, G. (1976) Spontaneous breakdown of symmetry and group contractions, Nucl Phys., B116, pp. 141–156

    Article  ADS  Google Scholar 

  10. von Neumann, J. (1955) Mathematical foundation of Quantum Mechanics. Princeton University Press, Princeton

    Google Scholar 

  11. Bratteli, O. and Robinson, D.W. (1979) Operator Algebras and Quantum Statistical Mechanics. Springer, Berlin

    MATH  Google Scholar 

  12. Itzykson, C. and Zuber, J.B. (1980) Quantum Field Theory. MacGraw-Hill Book Co., New York

    Google Scholar 

  13. Vitiello, G. (1974) Dynamical Rearrangement of Symmetry. PhD Thesis, University of Wisconsin, Milwakee

    Google Scholar 

  14. Anderson, M.P. (1958) Coherent excited states in the theory of superconductivity: gauge invariance and the Meissner effect, Phys. Rev., 110, pp. 827–835; New method in the theory of superconductivity, Phys. Rev., 110 pp. 985-986

    Article  MathSciNet  ADS  Google Scholar 

  15. Higgs, P. (1964) Broken Symmetries and the masses of gauge bosons, Phys. Rev. Lett., 13, pp. 508–509

    Article  MathSciNet  ADS  Google Scholar 

  16. Kibble, T.W.B. (1967) Symmetry breaking in non Abelian gauge theories, Phys. Rev., 155, pp. 1554–1561

    Article  ADS  Google Scholar 

  17. Matsumoto, H., Papastamatiou, N.J., Umezawa H. and Vitiello, G. (1975) Dynamical rearrangement of symmetry in the Anderson-Higgs-Kibble mechanism, Nucl. Phys., B97, pp. 61–89

    Article  ADS  Google Scholar 

  18. Matsumoto, H., Papastamatiou, N.J. and Umezawa, H. (1974) The formulation of spontaneos breakdown of symmetry in the path-integral method, Nucl. Phys., B68, pp. 236–254

    Google Scholar 

  19. Matsumoto, H., Papastamatiou, N.J. and Umezawa, H. (1974) The Goldstone theorem and dynamical rearrangement of symmetry in the path-integral formalism, Nucl. Phys., B82, pp. 45–68

    Article  ADS  Google Scholar 

  20. Shah, M., Umezawa, H. and Vitiello, G. (1974) Relation among spin operators and magnon, Phys. Rev., B1O, pp. 4724–4736

    ADS  Google Scholar 

  21. Matsumoto, H., Umezawa, H., Vitiello, G. and Wyly, J.K. (1974) Spontaneous breakdown of a non-Abelian symmetry, Phys. Rev., D9, pp. 2806–2813

    ADS  Google Scholar 

  22. Matsumoto, H., Papastamatiou, N.J. and Umezawa, H. (1975) The boson transformation and the vortex solutions, Nucl. Phys., B97, pp. 90–124

    Google Scholar 

  23. Matsumoto, H., Sodano, P. and Umezawa, H. (1979) Extended objects in quantum systems and soliton solutions Phys. Rev., D19, pp. 511–516

    ADS  Google Scholar 

  24. Wadati, M., Matsumoto, H. and Umezawa, H. (1978) Extended objects created by Goldstone bosons, Phys. Rev., D18, pp. 520–531

    MathSciNet  ADS  Google Scholar 

  25. Tze, H.C. and Ezawa, Z.F. (1975) Quark confinement and quantum vortex strings in Nambu-Heisenberg model, Phys. Lett., 55B, pp. 63–74; (1975) Dynamics of vacuum excitations and quark confinement in quantum field theories, Nucl. Phys., B96, pp.264-284

    Google Scholar 

  26. Manka, R. and Vitiello, G. (1990) Topological solitons and temperature effects in gauge field theory, Ann. Phys. (N.Y.), 199, pp. 61–83

    Article  ADS  MATH  Google Scholar 

  27. Nielsen, H.B. and Olesen, P. (1973) Vortex line models for dual strings, Nucl. Phys., B61, pp. 45–61

    Article  ADS  Google Scholar 

  28. Koma, T. and Tasaki, H. (1994) Symmetry breaking and finite-size effects in quantum many-body systems, J. Stat. Phys., 76, pp. 745–803

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Manka, R., Kuczynski, J. and Vitiello, G. (1986) Vacuum structure and temperature effects Nucl. Phys., B276, pp. 533–548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vitiello, G. (2000). Defect Formation Through Boson Condensation in Quantum Field Theory. In: Bunkov, Y.M., Godfrin, H. (eds) Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions. NATO Science Series, vol 549. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4106-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4106-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6205-0

  • Online ISBN: 978-94-011-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics